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1. Introduction

Estimation of the sensitivity of problem functions with respect to problem variables
forms the basis for many of our modern day algorithms for engineering optimization. The
most common application of problem sensitivities has been ia the calculation of objective
function and constraint partial derivatives for determining search directions and optimality
conditions. A second form of sensitivity analysis, parameter sensitivity, has also become
an important topic in recent years with the advent of renewe research in the optimization of
large engineering systems by means of decomposition mettods. By parameter sensitivity,
we refer to the estimation of changes in the modeling functions and current design variables
due to small changes in the fixed parameters of the formulation. Methods for calculating
these derivatives have been proposed and have been used a; the basis of a method for
multi-level decomposition of large engineering problems [‘iobieski, 1982]. Two
drawbacks to estimating parameter sensitivities by current raethods have been: (1) the need
for second order information about the Lagrangian at the cu.rrent point, and (2) the
estimates assume no change in the active set of constraints. The objectives of this work

were to investigate solutions to these two problems.

1.1. STANDARD NOTATION

To provide a framework about which we can disci1ss the various ways sensitivity
analysis can be performed, the following standard form of the nonlinear programming
problem, which explicitly represents the problem paramet:rs, is presented.

Minimize: f(x,P) Objective function (1.1)
Subject to:  hi(x,P) =0 Equality constrairts 1= 1,L (1.2)
gj(x,P) 20 Inequality constre intsj=1,1 (1.3)

Xmin € X < Xmax Variable bounds (1.4)

X = (X1,X2,...,Xn)  Design variables (1.5)

P = (p1,p2.-.Pk)  Problem parametcrs (1.6)

In the above formulation, we assume that the problem functions f, g, and h can be
either linear or nonlinear functions of the design variables. We also assume that the
problem parameters P, are held fixed during the course of the optimization. Any candidate

solution point, x* , must satisfy the following first order Xuhn-Tucker conditions:

V4L(x,v,u) =0 (1.7)
hi(x) =0 1=1,L (1.8)
gj(x)20 i=1] (1.9)



ujgj(x) = 0 j=1] (1.10)

y; 20 j=1] (1.11)
where the Lagrangian L, is given by:
L(x,v,u) = f(x) + 2v1 hy(x) - 2uj gj(x) (1.12)

At some point, usually the optimal point, we are intersted in understanding the
effect that changes in P will have on our proposed solution » *. Therefore we seek the
sensitivities, df/dP, 0x/oP, and d(h,g)/0P!. In this report, vie will propose a new
algorithm based on the Recursive Quadratic Programming (F QP) method for estimating
these parameter sensitivities. The following sections providc a description of this algorithm
and how it relates to current methods, a discussion of the imolementation issues, and some
initial testing on a test set of known characteristics. In addit-on, section 6 proposes some
solutions for estimating sensitivities in those cases where the active set of the constraints

changes when the parameter is changed.

1 The notation (h,g) refers to the set of constraints active at the curren: point.



2. Background

The standard problem of parameter sensitivity analysis is to indicate how the
objective function, constraints, and optimum design variables will change when problem
parameters or design variables are changed from their currert values. Parameter Sensitivity
analysis is usually performed at a candidate optimum point vhere we might be interested in
studying how the optimal design might be effected by changes in specifications, variability
due to manufacturing, or operational noises. In this chapter we present a historical
overview of the significant developments in sensitivity analvsis and provide a review and
assessment of current parameter sensitivity methods. The final section of the chapter
reviews work done in estimating parameter sensitivities for -hose cases where the active
constraint set changes.

2.1. REVIEW OF PARAMETER SENSITIVITY METEODS

The roots of sensitivity analysis can be traced to La;range (1881) when he
suggested solving equality constrained extrema problems ty finding the solution x*,and
v*, for the equations

V,L(x,v) =0 2.1)
hx)=0 (2.2)
where
L(x,v) = f(x) + 2vihy(X) (2.3)

where the v| are undetermined multipliers or Lagrange multipliers. The paper did not
provide the conditions for when solutions of equation (2.1-2.3), were actual solutions of

the extrema problems or how to interpret the Lagrange muitipliers.

Samuelson (1947) gave several interpretations of }.agrange multipliers in an
economic setting. He developed approaches based on using Lagrange multipliers to solve
different economic models and was the first to clearly idertify Lagrange multipliers as
shadow prices in an economic context. Kuhn and Tucker (1951) presented conditions for
relative extrema which use the Lagrange multipliers to establish optimality (ref. eq. 1.7 -
1.12). Since 1951 several constraint qualifications and e> tensions to these conditions have
been proposed and are described in Bazaraa and Shetty (1979).

Dantzig (1963) brought forth the idea of "Post Op:imality Analysis" for linear
programs. Dantzig described post optimality analysis as the calculation of the sensitivity of
the optimum with respect to changes in the problem paraineters. Sensitivity analysis has

been widely used in linear programming, a good survey of its use is provided by Gal
3



(1984).

Fiacco et al. (1968,1974,1976,1983) has also done e:.tensive research in the area of
sensitivity analysis. His book "Introduction to Sensitivity ard Stability Analysis” (1983)
covers the significant developments in the field of sensitivity analysis prior to 1982. He
has published many articles on sensitivity analysis, and has j robably been the most active

researcher of sensitivity analysis for nonlinear programming problems.

In the following subsections, we will discuss past w¢ ik related to the determination
of sensitivity information for nonlinear programming problems. The methods we will
discuss range from the most simplistic approach of reoptimi: ation to more elaborate
approaches based on the Kuhn-Tucker conditions or advanc:d optimization methods.

2.1.1. Brute Force Methods

The simplest, and probably most used method, for parameter sensitivity analysis 1S
to re-optimize the problem for the new values of the probler parameters and plot the
trends. We will refer to this as the Brute Force method. Tte Brute Force method is
probably the most accurate of the methods available (for lar ze variations in Ap, but can
experience round off and truncation errors when used to approximate derivatives) but it can
be computationally expensive even for small problems. Eximples of its use in the literature
are given in Arbuckle and Sliwa (1984) and Robertson and Gabriele (1987).

Armacost and Fiacco (1974) and McKeown (1980 h) describe a direct approach to
calculating parameter sensitivities based on the central diffecence approximation given
below

df*  f(x*,p + Ap) - f(x*,p - Ap)

ar” _ 2.4
b 255 (2.4)
ox* X*(p + Ap) - x*(p - Ap)

_ 2.5
o 250 (2.5)

This method requires the problem to be reoptimized (to a high degree of accuracy) for two
different values of the parameter. McKeown states that th s method should not be used as a
primary method for the calculation of sensitivities because it is computationally expensive.

2.1.2. Kuhn-Tucker Methods
To avoid the computational expense of reoptimiza ion, several researchers have
developed sensitivity methods based on the Kuhn-Tuckes conditions (1.7) - (1.12). Two

types of algorithms have resulted, those that differentiate ‘he Kuhn-Tucker conditions with
respect to p, and those that differentiate the optimality cor ditions for penalty functons.
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In the former category, a set of Kuhn-Tucker sensitivity equations have been
derived independently by several authors (Armacost and Fiacco 1974, Sobieski et. al.
1981, McKeown 1980 b) and result in the following linear system of equations.

VL ovee || 2| |5
Pi i

=0 2.

avw) || Ahg) @0
Vxhgt O i P

This linear system can be solved for the sensitivity cf the design variables with
respect to a problem parameter dx/op;, and the sensitivity of the Lagrange multipliers with
respect to pi, d(v,u)/op;. These can then be used to determine the sensitivity of the
objective function with respect to pi by the following

of _of 9T ox 27
dp; ~ Jpi | OX Opi D

For any change in the parameter Ap;, the new optirrum value of the objective

function or design variables can be estimated from the linezr extrapolations

* df
fnew = f(X old) + APi i (2.8)
* * ox
X new = X old + Api o ' (2.9)

These equations are bounded by the assumption thi:t the active set remains the
same. An estimate of when the active set will change can Ie made by examining the
Lagrange multipliers of the active inequality constraints and linear approximations of the
inactive constraints. An inequality constraint should leave the active set when its Lagrange
multiplier goes to zero. The corresponding value of Ap; where this occurs is predicted by

using the linear prediction
Api = —Bl— j € active set of constraints (2.10)
o)
opi
A new inequality constraint will enter the active set when its value goes to zero. A linear
prediction for when this happens is given by

Api = & T j ¢ active set of cons raints 2.11)
?_z‘_éj_ N ag]' ox
api Ox api



We can predict the change in active set to occur at the smalle it value of Apj obtained from

applying equations 2.10 and 2.11 to all constraints.

Fiacco (1974,1980,1983) has developed first and se ond order extrapolation
techniques to predict the new value of the optimum when parameters are perturbed.
Armacost and Fiacco have developed a second order extrapo lation for the objective function
value for the special case where the problem parameters are: :onfined to being the right hand
side values of the constraints. This provides second order r-:sponse information for the
objective function using the Lagrange multipliers and the pa-tials with respect to P of the
Lagrange multipliers.

Sobieski, et. al. (1981) observed that a more accurat> estimate of frew given in
(2.8) can be obtained if the value of Xpew given in (2.9) is used to calculate the value of the
objective function ata perturbation Apj. This will be a more accurate estimate for problems
where the constraints are well behaved and not highly nonli 1ear, but the objective function
is nonlinear.

Barthelemy and Sobieski (1983) derived the follow'ng formula that can also be
used to calculate the sensitivity of the objective function without the need to calculate
ox*/dp,

df* _ of i
E}-)—:-% +2 ujap (2.12)

The formula can be derived by assuming that objective fun:tion behaves like the
Lagrangian in the region of the optimum. This formula has also been derived by Fiacco
(1983) and McKeown (1980 b).

Diewart (1984) has developed some new sensitivity theories for dealing with the
addition of constraints at the solution of economic models before the solution of the
sensitivity equations. This analysis is important because taiere may be short term
restrictions on modifications that can be made to the systen. The paper presents a
recursive relationship that can be used to avoid refactorizing the sensitivity equations when
a new constraint is added to the problem. The paper also oresents equations that can be
used to calculate a second order estimate of the location o' the optimum, but this formula

requires third order derivatives which are seldom availabl= in engineering.

5 1.3. Methods Based on the Extended Design Space

Vanderplaats (1984 a, 1984 b) and Vanderplaats ind Yoshida (1985, 1986) have
6



developed an approach for calculating the sensitivity based or the method of feasible
directions. The sensitivities are estimated by extending the sct of design variables to
include the problem parameters for which a feasible directior is then determined. This
method is known as the Extended Design Space (EDS) method. Of the methods discussed,
it has the dual advantages of simplicity and efficiency. Vancerplaats (1984 a) reports that
the EDS method can handle near active constraints, and is abe to leave constraint
linearizations. However, the method does suffer from a sensitivity to one of its algorithm
parameters as reported in Vanderplaats and Cai (1987), and is unable to predict when
constraints will leave the active set. The EDS method is alsc: sensitive to the restriction of
the move vector to be of length one.

The EDS method can be used to assess the effect of perturbing several parameters at
the same time. It is also able to solve for sensitivities of degznerate optimal points where
either strict complementarity does not hold, or the constraint gradients of the active
constraints are linearly dependent. The method seems to give good estimations for medium
sized perturbations of the parameters, but for small perturbations the the Kuhn-Tucker
method described above gives better results. Vanderplaats :ind Cai (1987) also report that
there are some cases where the EDS algorithm can produce incorrect values of the
sensitivity derivatives.

Vanderplaats also proposes a second order approxiriation technique which is
interesting but requires second derivatives of the objective function and constraints. The
second order method solves a quadratic approximating problem for a specified value of the
parameter. The second order method will give good result: in a larger region about the
optimum than first order methods and does not appear to b: as sensitive to changes in the
active set as other methods are. However, there is still the problem of obtaining the
Hessians of the objective function and constraints and solving the quadratic approximating
problem. Vanderplaats and Cai (1987) feel that the seconc order EDS algorithm is the best
option short of reoptimizing the problem for estimating sersitivities. But they caution that
the method should not always be used because of its high -omputational cost.

2.1.4. Variable Sensitivities

McKeown (1980 a,c) has developed sensitivity an ilysis techniques for determining
the sensitivity of design variables subject to perturbations about the optimum. This
technique is based on an eigenvector analysis of the reducad Hessian matrix which applies
to a variant of our standard problem (1.1)-(1.6) where nc problem parameters exist . For
unconstrained problems the major eigenvector will point in the direction of maximum
increase of the objective function, the minor eigenvector will point in the direction of
minimum increase of the objective function. For constrained problems the directions are

7



projected on the active constraints. This type of information may be useful for setting
tolerances on design variables.

For McKeown's algorithm, the Hessian of the Lagrangian is needed but the
analysis is performed using only the reduced Hessian of the Lagrangian. An algorithm is
provided for reducing the Hessian. If the Hessian is to be evaluated numerically, an
algorithm is provided for the calculation of the reduced Hessian of the Lagran gian directly.
This will reduce the number of extra function evaluations that are needed to conduct the
sensitivity analysis.

2.1.5. Other Work

Garcia and Zangwill (1981) describe a Homotopy a)proach that can be used to
solve nonlinear programming problems. They state that this approach can also be used to
solve parametric nonlinear programming problems and is closely related to sensitivity and
perturbation analysis. Komija and Hirabay (1984) discuss some theoretical topics involved
in using a Homotopy approach to calculate parameter sensi'ivities when the active set of
constraints changes.

Dinkel and Kochenberger and Wong (1983) have d:veloped an incremental
approach for solving for the sensitivities of geometric programming problems. The
approach is to ask the user for the new value of the parame ter and then make several steps
with corrections to reach that point. They found the smalle r the step they used the more
accurate the solution would be.

Jittorntrum (1984) examines solving for the sensitivity of degenerate optimum
points using the Kuhn-Tucker sensitivity equations. He provides a way to solve these
problems using directional derivatives which provides dif erent answers for both positive
and negative perturbations in the parameters. Other theorctical issues for the use of
directional derivatives to calculate optimum parameter sen sitivities have been addressed by
Janin (1984), Gauvin and Dubeau (1983), and Rockafellir, R. T. (1984).

Zolezzi (1985) examines the conditions under whi:h the Lagrange multipliers are
continuous under perturbations in the problem data. This is important because Kuhn-
Tucker sensitivity analysis uses Lagrange multipliers and rates of change of the Lagrange
multipliers to predict the rate of change of the objective fi.nction. Cornet and Laroque
(1987) establish conditions under which the values of the Lagrange multipliers are
Lipschitz continuous for perturbations in the problem data.

Ganesh and Biegler (1987) have developed a senitivity analysis based on the
reduced Hessian. The reduction is conducted by using tt e equality constraints and the
8



implicit function theorem to reduce the dimensionality of the Hessian matrix that needs to
be calculated. Their method is beneficial when there are equality constraints present in the
formulation of the problem, because they have reduced the 1umber of function evaluations
required to find the required second order information numerically. Their method does not
provide dv/dp without calculating the full Hessian of the La zrangian.

Rao (1987 a) and Guang-Yaun and Wen-Quan (1985) have studied the problem of
dealing with fuzzy constraints and fuzzy objective function. In their work they first solve
a crisp problem then they attempt to calculate how far they « an relax constraints while
improving the objective function. To use their technique th user is required to specify
how much violation is allowed in the constraints. Templenian (1987) reports using fuzzy
set theory and optimization to design structures and deal wih uncertainties in the problem.

Sandgren, Gim and Ragsdell (1985) describe a prot lem formulation that can be
used to obtain optimum designs with a minimum sensitivity to uncontrollable parameters.
Their approach does not use post optimality analysis but us:s a modified objective function
to deal with the uncertainties in the problem parameters.

The area of calculating sensitivity derivatives with espect to design variables ( i. €.
the calculation of gradients of functions) has been an area ¢f active research. This can lead
to significant savings over using finite differencing. The structural optimization community
now widely uses sensitivity analysis when the finite element method is used to analyze a
structure. An excellent survey article of methods of sensitivity analysis for structural
optimization is provided by Adelman and Haftka (1986).

Haug and Arora, et al. (1977,1979,1981) have der eloped ways to calculate the
gradients analytically for many structural and dynamic applications. Many of these
methods are described in the book by Haug, Komkov and Choi (1985).

Sobieski, et al. (1981,1982,1983,1984,1985,198¢,1987) has been working on
developing sensitivity techniques for use with multi-level clecomposition techniques.
Decomposition methods break the solution of a large probiem into a system level problem
and a group of subproblems. Each subproblem is solved using a special formulation and
inputs from the system level problem. A sensitivity analysis is performed on the
subproblem and the results are feed as input to the system level problem. The system level
problem gathers all the sensitivities of the subproblems ard then based on these inputs and
others, determines the next iteration of the process. Usuzlly, the equations (2.6) - (2.9) are
used at the subsystem level to determine the required sens tivities, but some difficulties
have been encountered when changes in the active set occur.



Schmit and Chang (1984) have developed an extensicn of Sobieski's work and
derived sensitivity equations for structural optimization problems. They derived more
restrictive limits on the allowable perturbations than those prcvided by Sobieski. They
have assumed that second derivatives of the constraints are available which is true of many
structural problems but may not be true for other application :reas.

Schmit and Chang formulated their structural optimiztion problem using reciprocal
variables and solved for the sensitivity of the dual problem. For their structural problems,
the Hessian of the Lagrangian was diagonally dominate and the Hessian of the objective
functior: was analytically available. For this class of problen:s good results can be expected
even if the Hessian of the Lagrangian is inaccurate.

Buys and Gonin (1977) developed and implemented a sensitivity analysis
procedure for an augmented Lagrangian (AL) type code, VF)1A. Their implementation is
encouraging because they make use of the approximations o' the Hessian of the Lagrangian
that were calculated during the solution of the original problem, The results that they
obtained using the approximate matrices were in very close :igreement of those obtained by
using the exact matrices.

McKeown (1980 b) derives both the first and second order Kuhn-Tucker parameter
sensitivity equations. He also provides a discussion of Fiacco's sensitivity for SUMT
penalty functions versus Buys and Gonin's sensitivity for AL penalty functions. He
concludes that using sensitivity for AL penalty functions should be superior to sensitivity
by SUMT because AL produces better conditioned matrice: .

2.2.  PREVIOUS WORK IN ESTIMATING PARAME’ ER SENSITIVITIES FOR
CHANGES IN THE ACTIVE SET

When the active set of constraints changes, one of the underlying assumptions
made in deriving the Kuhn-Tucker sensitivity equations is violated. This can result in
inaccuracies in any extrapolations based on these sensitivit es since, in general, a change in
the active constraints will result in a different set of sensitivities. Accurate sensitivity
analysis in the presence of active set changes is also very iinportant for efficient
convergence of the multi-level decomposition techniques jroposed by Sobieski and, in

general, for an accurate representation of the local sensitiv ties.

In the following subsections, we will first discuss -he different cases that occur as a
result of a constraint entering or leaving the active set, whait effects these cases have on
sensitivity analysis, and how changes in the active set can be predicted. We will then
present examples of the sensitivities for the different cases which will also serve to indicate
how the different sensitivity algorithms perform.
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2.2.1. Cases to Consider

When a new constraint enters the active set, or a currzntly active constraint leaves
the active set, we can expect a change in the sensitivity derivatives. However, it is also
possible that the linear independence of the constraint gradie nts can also be affected. For
the discussion that follows, we define the following four ca:es that can result from changes
in the active set,

1. A constraint enters the active set and the constraint gradients are linearly

independent.

2. A constraint leaves the active set and the constrai1t gradients are linearly

independent.

3. A constraint enters the active set replacing an act ve constraint and the constraint

gradients are linearly dependent.
4. A constraint enters the active set and feasible reg ion disappears.

For Cases 1 and 2, we can expect discontinuities in the following derivatives when
the active set changes: d2f*/dp2, ox*/dp, and ou*/op.

Case 3 is characterized by a discontinuity in the Lag range multiplier estimates which
causes a discontinuity in df*/dp. Since the active set changes there will also be a
discontinuity in x*/dp. At the point where the constraints become linearly dependent , the
Kuhn-Tucker sensitivity equations become singular. Often what is happening for Case 3 is
that an exchange of constraints in the active set is about tc take place (i.c. the new
constraint may replace one of the constraints that is already in the active set ). If the
problem is not poorly formulated, we will find ourselves rioving through the degenerate
point as p increases or decreases and one of the constraint: will be dropped from the active
set.

Case 4 is characterized as a point from which p cai only be perturbed in one
direction. If p is perturbed in the wrong direction this wil' cause there to be no feasible
region and there will be no solution for the optimization problem with this value of p. Thus
we can only perturb p in the one direction that causes the optimum path to move into the
feasible region, and there will only exist a directional derivative for the problem in that
direction. Case 4 can be thought of as an overconstrainec design where the designer

adjusted a parameter to the point where the design is no longer able to meet specifications.

7 2.2. Prediction of when the Active set will Chenge

Barthelemy and Sobieski (1983 a) have observed that the accuracy of extrapolations
of the objcctivé function deteriorates rapidly when the ac:ive set changes. From section
2.1.2, we saw that we can use equations 2.10 and 2.11 to predict where the active set will

change, thus we can use this information to predict wher the extrapolations will deteriorate.
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A problem with bounding Ap by equations 2. 10 and 2.11 is that the estimate is only
good for the first constraint that is encountered because once the active set changes the
search direction to the new optimum will change (the discontinuity in ox/ap). Thus, it
becomes very difficult to estimate when or which constraint will leave/enter the active set
second. This problem will be addressed in section 6.

The merit of using equations 2.10 and 2.11 to predict when the active set will
change was discussed by Adelman and Haftka (1986). They state, "The effectiveness of
using this approach (equations 2.10 and 2.11) is still in dount with positive results being
obtained by Schmit and Chang (1984) and negative results being obtained by Barthelemy
and Sobieski (1983 a)". We feel that the positive results that were obtained by Schmit and
Chang are due to problem linearity and the changes in the a« tive set that they encountered
being case 1 and case 2 changes. We feel that the negative -esults obtained by Barthelemy
and Sobieski are due to nonlinearity of the problem and alsc- a case 3 change in the active
set taking place. As we will see later in this report, the con sequences on sensitivity
derivatives of case 3 changes in the active set are often much more severe than case 1 and
case 2 changes.

2.2.3. An Example of land 2

The effect of a constraint entering or leaving the active set (Cases 1 and 2) can best
be demonstrated by a simple example from Vanderplaats aad Yoshida (1985).

Minimize f(x) =2x12 - 2x1p +p2 +4x1- ip (2.13)

subject to: g1=4p+x120 (2.14)
The Lagrangian will be

L(x,u) = 2x12 - 2x1p + p2 + 4x1 -4p - u1(4p + x1) (2.15)

for p = 0, the optimum is f(x*) =0, x1*=0,g1=0,and 11 =4.

This example will illustrate a constraint leaving the active set (case 2) as p increases.
The same example can be used to illustrate a constraint entzring the active set (case 1) if we
use a different starting value of p.

To demonstrate the methods we have talked about, we will calculate the sensitivity
estimates using four representative methods: the first and second order Kuhn-Tucker
method, and first and second order extended design space method. We will conclude with

a comparison of the various methods used to solve the preblem.

To solve for the sensitivity by Kuhn-Tucker equations we use equation (2.6) to
provide the following system of equations

12



0x1

4 -17]9p 2
[ FAR 2.16)
which yield
a’;‘ =-4 2.17)
%‘%’L= 18 (2.18)
From equation (2.7) we can determine the sensitivity of the cbjective function with respect
to the parameter p to be,
df of  of T ox; _ _
35—3}-)-+E(_1 -a-p— —-4+4(-4)—-20 (2.19)

The active set will change when the Lagrange multiplier of the constraint goes to
zero, which can be estimated by equation (2.10)

-uy 4

= = — .22 .2

Ap Sus 18 0.2222 (2.20)
(&)

therefore we are assured of reasonable results for extrapola ions for which Ap less than
0.2222.

For example, a linear approximation by equation (2 8) to estimate the value of the
new optimum produce

frow = P + Apg =0 + Ap(-20) = -204p @21)

A quadratic estimate of the new value of the objective function can be made by
evaluating the following equation found in Fiacco (1983), McKeown (1980 b), and
Sobieski and Barthelemy (1983)

d2f 92L 92L ox du; d
o A ST M) @22)

which produces d2f/dp? = 82. Using the quadratic estimat  for the value of the objective
function we obtain

2
fow = £* + Apg—f)- ¥ 0.5Ap§5§Ap — 220Ap + 41Ap2 (2.23)

The same predictions can be made by Vanderplaa:s’ extended design space
algorithm. We begin by formulating the following direction finding problem for decreasing
values of p, where x2 represents the parameter p, and x3 is an additional variable to ensure
that p has the required sign.

minimize 4x1 - 4x2 - € X3 (2.24)
13



subject to:  x3+4x220 (2.25)
-x3-x320 (2.26)
1- (x12+x22)20 2.27)

For ¢ = 1000, the solution is x; = .970142, x2 = -.212536, x3 = .242536 which
yields the following estimates of the sensitivity derivatives

%= 20 (2.28)
dxy _
o (2.29)

For increasing values of p we obtain the following subproblem

minimize 4x1 - 4x2 - C X3 (2.30)
subjectto:  x1+4x220 (2.31)
x2-x320 (2.32)

1- (x12+ x22)20 (2.33)

When this problem is solved, the resulting sensitivities are sensitive to the value of
the parameter c. The solution for several values of ¢ are pr:sented below in Table 2.1.

Table 2.1 The effect of "c" on EDS sensitivity

variable ¢=1000 c=500 c=100 c=10 c=1.0 c=0.0
X1 -0.398E-2 -0.79E-2 -0.388E-1 -0.2763 -0.624 -0.707
X2 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
X3 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
df/dp -4.016 -4.0316 -4.155 -5.°50 -7.196 -8.0

From this table it is clear that the choice of ¢ will effect the sensitivity derivatives. For
demonstration purposes ¢ = 10 was chosen, this yielded tte following sensitivity

derivatives.
df
-‘E =-5.1502 (2.34)
dx _
- -.28756 (2.35)

Vanderplaats and Yoshida (1985) report that the value of ¢ has little effect on the
EDS algorithm. However Vanderplaats and Cai (1987) report that after further research the
value of ¢ will effect the accuracy of the EDS procedure.

Using Vanderplaats second order extended desigr space algorithm provides exact

answers for the sensitivity for this problem.
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Figure 2.1 illustrates the accuracy of various methods.

We can see that when the

active set changes at Ap = 0.222 the predictions become less accurate.
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Figure 2.1 A plot of various optimal values o' f with respect to p

Figure 2.2 illustrates the location of the optimum Vi

lue of x1 as a function of p, as

predicted by various algorithms. When the active set changes there is a discontinuity in the

rate of change of the optimum value of xq with respect to - (i. e. dx1/dp is discontinuous at

the point).

Design Variables

Actual solution Prediction
/ by feasible
directions
‘// for Ap20
Prediction
by feasible
directions
for Ap<O
base p=0 Predicticn
4— by Kuhn Tucker
X —
-1.0 -0.5 0.0 0.5 1.0 L5 2.0 2.5 3.0
g(1) leaves P

the active set
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Figure 2.2 A plot of various optimal values of <) with respect to p

From figures 2.1 and 2.2 it is possible to draw somt: conclusions about the relative
performance of the four different methods that were used tc obtain sensitivity information.
Using the first order Kuhn - Tucker method we see that the solution follows the inequality
constraint in both the positive and negative direction. The l:near estimate of the new value
of x, is accurate for small changes in p less than 0.2222. But for values of p greater than
0.2222, the active set has changed and large errors in the predictions are introduced. This
is also true for the linear prediction for the value of the objective function.

The second order Kuhn - Tucker estimate of the value of the objective function is in
exact agreement in the region where the active set remains the same, as seen in figure 2.1.
However after the active set changes the predicted value of the objective function is a poor
predictor of the actual value of the optimum.

The first order extended design space provides the same results as the first order
Kuhn-Tucker sensitivity for decreasing values of p. For increasing values of p we see that
the search direction changes. This approximation appears ‘0 overcome the constraint
leaving the active set, but it is a poor predictor of the actual value of the optimum for small

n 1

variations in p. For other values of the parameter "c" we will obtain similar values for the

sensitivity derivatives.

The second order extended design space provides tae exact values of the locations
of the optimum value of the objective function. This is because the approximating problem

that is formulated is the same as the original problem.

With this simple example we have demonstrated ths effect of a constraint leaving
the active set on the algorithms for estimating parameter se nsitivity. We can see from this
example that, as we might anticipate, using second order e stimates can produce more
accurate extrapolations. In fact, only the second order ext:nded design space algorithm
provided good results after the constraint left the active set. However its usefulness is
diminished by the need for second derivatives which can te computationally expensive to

obtain.

2.2.4. Example of Case 3

Recall, that Case 3 is characterized by the adding ¢f a new constraint to the active
set and the gradients of the active constraints become line arly dependent. When the
gradients of the constraints are linearly dependent the Lagrange multipliers will not be

uniquely determined and the Kuhn-Tucker optimality conlitions cannot be uniquely
16



verified. This also results in a discontinuity in the Lagrange multiplier sensitivities.

When the constraint gradients become linearly dependeat for a value of one of the
parameters it is assumed that this is only a temporary conditior. If the user is interested in
the effect of changing the parameter on the optimum then this jaformation can be obtained
on either side of the singular point.

This behavior is demonstrated in the following examplz

minimize: f=x12+@®-1)2 (2.36)
subject to: g1 = 3x;+2P-1020 2.37)
g2=2x1+3P-1020 (2.38)

When P = 2, the minimum £* = 5 occurs at xi* = 2. Atthis point , both constraints are
active, and the gradients of the constraints are not linearly indzpendent. The Lagrange
multipliers will be in the family

uuz e {3 up+2u=4,u; >0, u2> 0} (3.39)

At this point, df*/dp, ox*/dp and dw/dp can not be uniquely determined. Results
for these derivatives can be developed if we consider positive- and negative changes in p
separately on either side of this degenerate point which we shall indicate by ox/dp+ for
increasing values of p and ox/op- for decreasing values of p.

Figure 2.3 presents the sensitivity plots for this protlem. Figure 2.3 (a) and (b)
represent the first order predictions of the new values of the Lagrange multipliers for this
problem. For this problem the linear predictions agree with the optimum Lagrange
multipliers. There is a discontinuity at Ap = 0.0, therefore there will only be directional
derivatives for these values. Figure 2.3 (c) represents linea predictions of the new value
of the objective function. Notice again that there is a discor tinuity in the slope of the
prediction and we can not determine df*/dp for Ap =0. Therefore df*/dp will not exist for
this value of p. Figure 2.3 (d) represents the predicted location of x1 and we notice the
same situation as we have for df*/dp.
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2. MMARY

Sensitivity analysis is now routinely used in linear programming (Falk and Fiacco
1982) and most linear programming algorithms provide modules for the calculation of
sensitivities. This has not been the case for applications o' nonlinear programming. The
most common use of sensitivity derivatives has been in the area of structural optimization
and in work done for decomposition methods. Some of tl:e reasons for this may be due to
a lack of understanding about how to perform sensitivity :-nalysis for nonlinear problems,
or to a lack of established procedures and supporting softv/are that make the analysis more
readily available to the average user. The largest contribu:or to its lack of use is probably
the difficulty involved in implementing the current theory and methods.

An assessment of the methods discussed in Section 2.1 and demonstrated in the
examples in Section 2.2.4 leads to the following conclusions about the current state of the

art of parameter sensitivity analysis:

1. The Kuhn-Tucker sensitivity equations (2.6) accurately define the desired
sensitivities assuming no changes in the active¢ constraints. To implement these
equations, however, requires second order information about the Hessian of the
Lagrangian, and the change in the gradient of the Lagrangian with respect to the
parameter. Both of which are difficult to obtan reliably for all but a few special
cases.
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2. The Extended Design Space (EDS) method pro+ides sensitivity information
without the need for the second order information required of the Kuhn-Tucker
method. However, the sensitivity estimates are effected by a choice of a
formulating parameter c, and may not give the same directions as those obtained
from the Kuhn-Tucker method.

3. Changes in the active constraint set will effect the accuracy of any of the
methods and may limit the region upon which extrapolations to the design can
be relied upon.
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3. New method for Estimating Parameter Sensitivity

In this chapter a new method for estimating parameter «ensitivities based on the
Recursive Quadratic PrOgramming(RQP) method is described. We begin with a brief
description of the RQP method and the advantages it provides for estimating sensitivities.
Next, we present the RQP based algorithm for estimating para neter sensitivity that exploits
the advantages of the RQP method discussed in the previous cection. This is followed by a
comparison of the new method with existing methods based 01 the type of information that
is being produced and the number of function evaluations req sired. Finally, a discussion
is presented of potential problems that may be encountered with the new RQP sensitivity
method.

3.1, ROP METHODS

The RQP method has been on the forefront of recent 1esearch in optimization
algorithms and has been emerging as one of the most efficient methods available for
solving small to medium sized, general nonlinear programm:ng problems (equations 1.1-
1.6). State of the art RQP methods have been developed by many researchers, such as,
Powell (1983), Schittkowski (1984), Gill, Murray and Wright (1986) and Bartholomew-
Biggs (1986,1987) to name a few. The algorithm has been 12sted against other general
nonlinear programming algorithms by Schittkowski (1980), Ecker and Kupferschmid
(1984), Belegundu and Arora (1985). The results of these tssts have shown the RQP
method to be one of the most efficient algorithms available for the solution of nonlinear

programming problems.

All RQP methods use the same basic strategy of lincarizing the constraints and
approximating the Hessian of the Lagrangian to form a qua fratic programming (QP)
subproblem. The QP subproblem is then solved for the search direction, s, and a new
estimate the Lagrange multipliers of the constraints. The CP subproblem has the form

Minimize 1/2sTBs +sTV{ (3.1)
subject to VhTs +h = 0 (3.2)
VegTs +g20 3.3)

where B is an approximation to the Hessian of the Lagran zian which is normally
constructed by variable metric methods. The Lagrange muitipliers of the constraints for the
original problem (equations 1.1-1.6) are estimated by the ‘.agrange multipliers of the
constraints in the QP subproblem (equations 3.1-3.3). Tte search direction s is then used

10 calculate a new estimate of the optimum
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xit+1 = xit + as (3.4)
where o is determined by minimizing a line search penalty fusiction P of the following

general form,

P(x,u,v,R) = f(x) + R*Q(h,g,u,v) (3.5)
where Q represents some combination of the constraints and 'he Lagrange multipliers. The
penalty function attempts to assure that both the objective function and the violation of the
constraints are reduced. As the method converges, the optimal step length o generally
approaches 1.

RQOPT, a typical RQP algorithm, was used in our ¢ search. A summary of the
algorithm that is used by RQOPT is presented here, a fall description of RQOPT can be
found in the users manual (Beltracchi and Gabriele 1987 a), or Beltracchi (1985), Gabriele
and Beltracchi (1986,1987 b). There were several modificat-ons that were made to RQOPT
for this work and these will be discussed in section 4.1 of this report.

Given X 0

An Approximation to H
and algorithm parameters

|

1. Define the Active Set

2. Calculate the Gradients and
update the Hessian Approximeton

l

[3. Solve the QP Subprobler: |

[4. Find the intial step lengtli |

[5. Conduct the Line Search |

[ 6. Update Penalty Paramet:rs |

[T}oto Step IJ

Figure 3.1 Flow Chart for RCOPT

Figure 3.1 shows the basic steps that are used by the RQOPT program. The
RQOPT algorithm begins with an initial estimate of the location of the optimum and several
algorithm parameters that have been set by the user. The first step of the algorithm is to
identify the active constraints, it is important that the proper constraints are chosen to be in

the active set as this can effect the rate of convergence of :he algorithm and, for our
21



purposes, the approximation of the Hessian of the Lagrangian. Algorithm parameters are
available to allow the user to control which constraints are considered active during the
course of the optimization.

The second step is to calculate the gradients of the objective function and the
constraints that are in the active set and then update the approx: mation of the Hessian of the
Lagrangian. The update of the Hessian is performed using the BFS variable metric update
with modifications specified by Powell (1977).

The third step is to solve a quadratic programming sul problem (equations 3.1-3.3).
The QP subproblems generated by RQOPT are solved by OP1QP, a special implementation
of the reduced gradient method. If the subproblem has no fea sible solution, the active setis
redefined by dropping constraints from the active set until a fe asible subproblem can be
found.

The line search for the next point xit+1 makes up the tourth and fifth steps of the
algorithm. An initial step size for the line search is determined in the fourth step such that
constraints not in the active set are not excessively violated. The line search is performed in
the fifth step, and if a step of a. = 1 satisfies the line search criteria, then that step is taken

and the line search ended.

The sixth step updates the penalty parameters used ir the line search, and the
Lagrange multiplier estimates. We then return to start another iteration.

There have been several different variants of the RQP method proposed. Some of
the variants are discussed in Beltracchi (1985). The major cifferences in RQP algorithms
are in the form of the line search objective function (equaticn 3.5) and the formulations of
the QP subproblem (equations 3.1-3.3) that are used. Rese irch continues on these areas
but no one formulation has yet to prove itself clearly sup  Jr.

Some of the penalty functions that have been propcsed for (3.5) are a 1 exact
penalty function (Fletcher 1984, Powell 1987), a I quadratic loss penalty function
(Bartholomew-Biggs 1980) or an augmented Lagrangian (Chen,Kong and Cha
1987 Bartholomew-Biggs 1985, 1987). The penalty funct ion's parameters are adjusted
after each iteration, and how the parameters are updated ef'ects the convergence of the
method.

There are two basic philosophies for forming the OP subproblem for RQP
methods, the inequality constrained (IQP) formulation and equality constrained (EQP)
formulation. The most common is the IQP approach which uses a subproblem of the form
of equations 3.1-3.3. The EQP approach 1inez;rizes only ¢ subset of the inequality
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constraints and considers these as equality constraints in th:: subproblem(i.e. equation 33
is considered to be an equality constraint). A discussion of the advantages and
disadvantages of the IQP and EQP subproblem formulation can be found in (Bartholomew-
Biggs 1987,1986,1982, Zhou and Mayne 1985, Schittkow ;ki 1983, Murray and Wright
1982, or Powell 1978).

Although the method does perform well, it does ha7e some disadvantages. In
general, the method produces a series of infeasible points while approaching the solution
which may pose a problem for some problem formulations RQP methods are also
sensitive to variable and objective function scaling and no g ood scaling algorithms have
been proposed. Finally, the best penalty function or algorithm for updating the penalty
parameters for the line search is still a subject of a great de: of research in these methods.

On the plus side, the following advantages have be :n attributed to the method. In
terms of number of function evaluations, this method appe irs to be one of the most
efficient methods available. This has been demonstrated ir any of the published
comparison studies in which codes for these methods participants. The method does not
require a feasible starting point which means there is no sp:cial phase 1 search employed as
in the GRG method or the feasible direction method. Although, as mentioned above, the
method is sensitive to variable and objective function scaling, it is not sensitive to
constraint scaling. Finally, the RQP method provides an estimate of the Hessian of the
Lagrangian, which can be useful for other purposes, and it is very efficient at locating an
optimum when the starting point is close to the true optimum. Both of these last
advantages will be exploited in the next section which describes a method for sensitivity
estimation based on the RQP method.

3.2, PROPOSED ALGORITHM FOR PARAMETER ENSITIVITY

In reviewing the current methods for sensitivity an alysis in chapter 2, we recall that
to employ the Kuhn-Tucker sensitivity equations required second order information about
the Lagrangian. For most engineering problems this type of information is often not
available in closed form, and estimation techniques would be prone to truncation and
numerical errors. Therefore, the application of these equztions to a broad spectrum of
engineering applications is limited.

One proposal mentioned in chapter 2 to circumvent these problems was suggested
by Armacost and Fiacco (1974) and McKeown (1980 b). Their proposal to estimate the
sensitivities without estimating the higher order information was given in equations 2.4 and
2.5,
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df* _ f(x*,p + Ap) - f(x*, p - Ap)

dp 2 Ap

Ix* _x7(p+A4p)- x"(p - Ap)
dp 2 Ap

These equations represent the use of differencing techniques to estimate the sensitivities,

where the values f(x*,p + Ap), x*(p + Ap), etc. are determined by reoptimizing the
problem for the new values of the parameter. For most algor thms, particularly penalty
function based methods, the reoptimizations would be 2 non-irivial task requiring a
considerable number of function evaluations. However, this is the type of problem where
the RQP method is considered to be very effective. The goal of the new algorithm is to
exploit the strengths of the RQP method to estimate sensitivi'ies by these differencing
techniques.

The RQP method possesses two characteristics that we felt can be exploited for
determining parameter sensitivities: (1) an approximation to the Hessian of the Lagrangian
is developed, and (2) if this approximation is exact (or close) then the RQP method quickly
and efficiently solve the reoptimization problem used in the difference equations.
Essentially, if we can develop good Hessian approximation:, the RQP method is equivalent
to applying Newton's method to solve the Kuhn-Tucker coi ditions for the perturbed
problems which should require only 1 or 2 iterations of RQP!. The small number of
iterations, coupled with the fact that the RQP method shoul require only a one step line
search, should allow the reoptimizations to occur without tt e need for many function
evaluations.

Based on the above arguments, we propose the following procedure to calculate
parameter sensitivity derivatives (for cases where there are no changes in the active set for

small variations in the paramters?).

Step 0. Given an optimal solution x*, f*, u*, an a:tive set of constraints, and an

approximation to the Hessian of the Lagrangian, all achieved by convergence
of the RQP method.
(the * notation is used to denote optimum values)

Step 1. Perturb the fixed parameter p; to pi+ = pi{ + Ap; where Ap; is some small
perturbation to pj

Step 2. Perform one complete iteration of the RQ}? method to find:
£+ the estimated value of the optimum object: ve function
x+ the estimated value of the optimal of the c:esign variables

1 We can expect only one or two iterations of RQP if we can adequately approximate the perturbed problem
with a quadratic function. Due to the small region of interest, a quadratic approximation should be good.

2 At points where the active set changes then modifications discuss-:d in chapter 6 must be used to calculate
directional derivatives.
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u* the estimated value of the optimum Lagrange nultipliers

git j & Active set
(as predicted by the RQP method for pi = pi*)

Step 3. Perturb the fixed parameter p; tO pi” = pi¥ - Apj

Step 4. Perform one complete iteration of the RQP m::thod to find:
f- the estimated value of the optimum objective iunction
«- the estimated value of the optimal of the design variables
u- the estimated value of the optimum Lagrange multipliers
gj" j & Active set
(as predicted by the RQP method for pi = P: )

Step 5. Obtain estimates for the sensitivity derivatives from the following central
difference approximations

daf* - f
o e 3.6
B~ 2ap (3.6)
ox* x%t -x-
- . 3.7
o 24p
Ju* ut -u-
= (3.8)
O 24p
Step 6. Estimate the sensitivity of the inactive cons! raints by
& gt g
dgi® _Bi" " Bi  je Active set (3.9)

dp 2Ap

In addition to the algorithm described above, the fo lowing variants of the basic
algorithm are also proposed

1. Forward differencing, For this variant we wou'd omit steps 3 and 4 and then
use a forward difference approximation (equaticn 3.10 instead of equations 3.6-

3.9) to approximate the derivatives

Qgi _9"-¢g (3.10)
P Ap

where q can represent f* x, u, and the inactive constraints. We may want to
use this formulation because it requires less fun :tion evaluations than the central
difference approximation. However, the forwa-d difference approximation is
more susceptible to roundoff and truncation errors and requires a more accurate

optimum to yield good sensitivity derivatives.
2. Forward differencing using 2 iterations of the RQP method. This variant is
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similar to variant 1, but we would perform 2 iter itions of RQOPT in step 2. This
will yield a more accurate estimate of the optimum of the perturbed problem.
When we use this option we can also update the ipproximation to the Hessian of
the Lagrangian, or adjust the perturbation Ap to ¢ btain a more accurate estimate

of the derivatives.

3. Central differencing using 2 iterations of the RCP method. This variant would
perform two iterations of RQOPT in steps 2 and 4 of the basic algorithm. Asin
variant 2 we can update the Hessian approximation during each iteration or adjust
the perturbation Ap to obtain a more accurate estimate of the derivatives. This

variant is the most computationally expensive of the proposed variants.

When there are many parameters that the user needs to obtain sensitivities for then
the user may want to use variant 2 or variant 3 to calculate the sensitivities for the first few
parameters. This will allow a more accurate estimate of th: Hessian of the Lagrangian to be
constructed. After an accurate estimate of the Hessian of t1e Lagrangian is built, the user
should switch to either the baseline or variant 1 to obtain tl.e sensitivities of the remaining
parameters. The Kuhn-Tucker sensitivity equations may «1so be used with the Hessian
approximation, after a good estimate of the Hessian of the Lagrangian is built. However
the Kuhn-Tucker sensitivity equations also require dVxL/cp be calculated and this term
may be subject to numerical noise because VxL = 0.

3.3. COMPARISON TO EXISTING METHODS

This section provides a derivation that indicates the: performance that is expected
from the new sensitivity algorithm. This section also presents a comparison between the
RQP based method and two existing methods described ir chapter 2 based on the number
of function evaluations required to estimate the sensitivitics.

3.3.1. Demonstration of Equivalence of New Me:hod to Kuhn-Tucker Method

This section will show that the finite difference apsroximations obtained by the
proposed method are in fact equivalent to the sensitivities obtained by solving a modified
set of Kuhn-Tucker sensitivity equations. The modification of the Kuhn-Tucker sensitivity
equations involves replacing the Hessian of the Lagrangi:n with the approximation B,
obtained from the RQP method.

The following assumptions are made for this derivation; no equality constraints are
present, the base optimal point is stable3, and the gradien's are continuous. The derivation

3 A stable point is defined as a point where the acitve set does not « hange for small variations in the
parameters
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in the presence of equality constraints does not change too snuch but the equality constraints
were left out to simplify the notation. If the base point is not stable then this derivation can
be used to find directional derivatives; this will be discussed at the end of this section. If
the gradients are not continuous then we cannot even be as:ured of an optimum point since
the assumption of continuity is also made for the derivatior by the Kuhn-Tucker method.

We begin by restating the Kuhn-Tucker Sensitivity equations

g_X_ oV,L
ap+ o |=0 (3.11)

u d
v,eT 0 p. a-g—

We strive in this derivation to show that the proposed method is equivalent to estimating the

2
VL -V,8

sensitivities using modified version of equation (3.11) that replaces ViL with B obtained

from the RQP method. If this is the case, then we can anticipate the kind of accuracy to
expect and where the possible sources of error will result.

If we examine the equations (3.6-3.8), used by the proposed RQP sensitivity
method we see that these provide finite difference approxiiaations to the sensitivity
derivatives of the objective function, design variables, and Lagrange multipliers with
respect to p;. The derivatives are defined by the following

df* _ Lim  (P*Oc*+4x,pO+Ap) - F*(x*,p%) (3.12)
dp = Ap-0 ( Ap ] )
ax* lim (x*(p%+Ap) - x*(p9)

Tp  ap-0 ( Ap ) 19
Ax = %‘I—:‘-Ap (3.14)
du* lim (u*(pO+Ap) - u*(p?)

i, (e

where p0 represents our base point.

The RQP subproblem for the simplified case wher: the active constraints remain
active and there are no equality constraints can be written 1s

min 1/2 sTBs + sTV,f (3.16)

subject to sTV,gj+gj=0 je Active Set (3.17)

where B is the approximation to the Hessian of the Lagrangian and the inequality
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constraints gjare considered as equality constraints.

If we assume? a step length of & = 1 is used in the line search (equation 3.4) we

can rewrite equation 3.4 in terms of X' - x as

s=x'-X (3.18)
where X' is the new estimate of x*. Substituting equation 3.18 into equations 3. 16 and
3.17 we obtain the following subproblem which is minimi zed with (x' - x) as the design
variables

min 1/2 (x'-x)TB(x"-x) + (x'-x)TVf(x,p + Api) (3.19)

subject to (x'-x)TVygj(x,p + Apj) + gj(x,p +Ap)) =0 je€ Active Set  (3.20)
We can now state the optimality conditions for the subproblem represented in equations
(3.19-20) as

B(x'-x) + Vxf(x,p + Ap;) - u'Vxgj(x,p + Api) = 1) (3.21)

(x'-x)TVxgj(x,p + Apj) + gj(x,p + Ap) =0 j € Active Set (3.22)

Here u' represents the estimated value of the Lagrange mu'tipliers at the new optimum.

Now we substitute into equation (3.21) the following definitions of zero

V,L(x,p%) = 0 = V,f(x,p0) - uVyg(x,p0) (3.23)
uV,g(x,p%+ Ap) - uV,g(x,p0+ Ap) = 0 (3.24)
This will yield

B(x'-x) + Vxf(x,p0 + Ap) - u'Vgj(x,p%+ Ap) - (VAf(x,p0) - uVxg(x,p0))+
uVyg(x,p0+ Ap) - uVyg(x,p%+ Ap) = 0 (3.25)

Rearranging we obtain

B(x'-x) - u'Vygj(x,p%+ Ap) + uVyg(x,p0+ Ap) +
(V£(x,p0 + Ap) - uVxg(x,p0 + Ap)) - (Vxf(x,p) - uVxe(x,p9) =0 (3.26)

Rearranging further and writing in terms of the Lagrangian function we obtain

B(x'-x) - (' - u)Vxgj(x,p0+ Ap) + V,L(x,u,p0+ Ap) - VxL(x,u,p% =0
(3.27)

Now we will divide equation (3.27) by Ap and teke the limit as Ap goes to zero to

4 A common assumption for RQP methods
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obtain

im B(x'-x) - (' - WVxgj(x.p0+ Ap) + V,L(x,u,p%+ 3p) - VaL(xup®) _ o

Ap—0 Ap
(3.28)
Using the additive and multiplicative properties of the Limit furction we obtain
lim (x'-X lim ' - u- lim
22N - —_— : 04 /
B . _,0( Ap) Ap_ao(" . ) o o (Va0 4p))

- v 0 v 0

lim ( <L (x,u,p0+ Ap) - V,L{X,u.p ))z 0 (3.29)

Ap—0 Ap

Now we can use the definition of a derivative of some function h with respect to some variable p

oh Lim h(p+Ap)-h(p)

= .30
55 Ap—0 Ap (3 )
Applying the definition of 9x/dp, ou/dp to (3.29) we obtain
ox  ou lim 90 9V L(x,u,p®) _

BIE - G apoVagixp®t P g =0 33D
If we use the standard assumption that the functions are twice continuously differentiable
we can state

Aps0 Vgj(xp0 + Ap) = Vagj(x,p? (3.32)

And now substituting equation (3.32) into equation (3.31) we obtain

0 0 oV, L(x,u,p?
BE% . ngj(x,pO)B% +_LETP_-p—)- =0

The equation above (equation 3.33) represents the first part of the Kuhn-Tucker sensitivity

(3.33)

equations with the approximation B instead of the Hessian of the Lagrangian.

The next step in this derivation is to examine equation (3.22) in terms of pY + Ap

we obtain

(x‘-x)Tngj(x,pO + Ap) + gj(x,p0 +Ap)=0 jJ€ Active Set (3.34)
Now we can subtract gi(x,p) = 0 from equation (3.34) to cbtain

(x'-x)Tngj(x,pO +Ap) + gj(x,po + Ap) - gj(x,p0}= 0 je Active Set (3.35)

If we divide equation (3.35) by Ap and take the limit as Ay goes to zero we can write
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lim ((X'-X)Tnge(x,pO +48p) | gi(x,p% + Ap) - gi(x,p%)

Ap—0 Ap Ap J= 0 (3.36)

Using the additive and multiplicative properties of the limit function we obtain

lim
Ap—0

lim x'-xy lim (g (x,p% + Ap) - gj(X,PO)
(% 00 X-x g _

(3.37)
Again using the definition of a partial derivative of (equati»n 3.30) and we obtain from
equation (3.37)

lim x  dg;
a0 VEIO6PO +Ap) x5 + k=0 (3.38)

Using the results in equation (3.32) we obtain
ox  0gi
(x n0 -
Vagix.p%) + 5o + B%L‘ 0 (3.39)
Which represents the second part of the Kuhn-Tucker sen:itivity equations.

Now equations (3.33) and (3.39) can be assemble«! into matrix form to yield

BV 0x] | aV4L
Vxgl|l P |1 |2 (3.40)
v.el 0 du 0

%] L5

Equation 3.40 is the same as equation 3.19 with the excef tion that equation 3.40 uses the
approximation, B, of the Hessian of the Lagrangian in pl:ce of, ViL, the true Hessian of

the Lagrangian. Referring to (3.40) as the modified Kuhr -Tucker equations, we see that
the proposed method is principally a difference approxim:tion to the modified Kuhn-
Tucker equations. This implies that if B is a good approximation of the Hessian of the
Lagrangian, and a proper choice can be made for the diffe:ence parameter that minimizes
truncation and roundoff errors, then we can produce sensitivity derivatives without the
need to obtain or estimate the second derivatives required of the Kuhn-Tucker method.

Several examples were tested to see if the sensitiv:ty derivatives estimated by the
RQP method with one iteration converged to the value of sensitivity derivatives estimated
by the Kuhn-Tucker sensitivity with the approximate Hessian. From these examples we
observed that the sensitivity derivatives delivered by the rew RQP algorithm are close to
the derivatives approximated by the Kuhn-Tucker method with the Hessian approximation.
One of these examples is presented here to show this agreement.
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Test problem 2 (which is described in the appendix) is u sed to demonstrate the
equivalence of the new method to the Kuhn-Tucker method. The starting point of x0=
(1.1,1.1,1.1) was used. RQOPT(with the BFS update and HO =) solved the problem in

one iteration and yielded the following approximation to the He ssian matrix’

[322}
H =1232
approx 523

If we use this Hessian approximation to solve for the sensitivit / of parameter 1 by equation

(3.40) we will obtain the following system of equations

_axl—‘
op1
322 -1 ?_2_ 212
232-1 Pl 51
{223-1} ox3 {0}_0 (3.41)
1110419 1
Laul
op1-
the solution of these equations yields
%’)‘—1 ~ (9.33333,-7.66666,-2.66666) (3.42)
%: (-4.66666) (3.43)

The RQP based sensitivity algorithm calculated the following sensitivity derivative

approximations.

% —(9.33333,-7.66666,-2.66666) (3.44)

gglf (-4.66666) (3.45)

The above derivatives were calculated using the RQSEN program (described in section 4
and the appendix of this report) with a perturbation of Ap = 0.0001 (using central

differencing, equations 3.7,3.8) and one iteration of RQP 10 solve the perturbed problems.

If the base point, p?, is unstable (degenerate) we Cin use a similar derivation to
calculate directional derivatives, which will be useful for predicting the sensitivities of the
design variables and Lagrange multipliers. The use of directional derivatives will be

discussed in section 6.

5The Hessian approximation for problem 2 is not close to the true Fessian of the Lagrangian ( given in the
appendix of this report). This is because the starting point was chosen to produce a poor approximation SO

we could clearly indicate the performance of the RQP sensitivity me thod in comparison to the Kuhn-Tucker
sensitivity method with the approximate Hessian from RQOPT

31



3.3.2. Performance Comparison with Other Methcds

This section compares the RQP based method to tw o of the methods discussed in
chapter 2; the Kuhn-Tucker method, and the extended desi rn space (EDS) method. The
comparison is based on Table 3.1 which examines the nurcber of function evaluations
required by each method to calculate parameter sensitivitie s df*/dp, dx*/dp and ou*/dp
(assuming that when the optimum is found that the Kuhn-Tucker conditions have been
checked, this means that V4L and the Lagrange multiplier:. are known before the
sensitivity analysis is performed). It is assumed that the otjective function and constraints
are interrelated. It is also assumed that problem linearity or problem form are not
exploited in calculating parameter sensitivities.

The first row of Table 3.1 represents the methods 1:sed in this comparison. The
second row represents the number of function evaluations 1equired to calculate the
sensitivity derivatives for the first parameter. Subsequent )>arameters may require fewer

evaluations for some methods.

The first column of Table 3.1 represents the numbx r of variables present in the
problem. The second column represents the amount of work required to solve for the
sensitivities using the Kuhn-Tucker sensitivity equations. The third and fourth columns
represent the number of function evaluations required by the EDS algorithm. Column 3
represents the first order method and column 4 the second order method. The fourth
column, RQP 1, indicates that forward difference approxiraations were used to calculate the
gradients. The fifth column RQP 2, also uses forward difference approximations but 2
iterations of RQOPT are allowed during the reoptimizatior . The fifth column RQP 3
represents the amount of work required for the base line al gorithm using central difference
approximations. The sixth column RQP 4 represents usin 3 central difference
approximations with 2 iterations of RQOPT.

If the objective function sensitivity is calculated by equation 2.12
(df*/dp = of/0p - u dg/dp) then assuming that objective ¢ nd constraint information can
both be obtain in one call, only one extra function evaluation is required to determine of/dp
and dg/ap. However, if one wants the design variable anc Lagrange multiplier sensitivity
then some other equations must be used.

6The value of the objective function and all of the constraints are ca‘culated by one subroutine
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n Kuhn-Tucker EDS (1Y) EDS(2nd)  RQP1 ROP 2 RQP 3 RQP 4

22-2-+ 3’2_n+ 1 1 %I-L2+ 3-(9-;—11 n+l 2142 2n+1 4n+2
1 4 1 5 2 4 3 6
2 6 1 9 3 6 5 10
3 10 1 14 4 8 7 14
4 15 1 20 5 10 9 - 18
5 21 1 27 6 12 11 22
10 66 1 77 11 22 21 42
15 136 1 152 16 32 31 62
20 231 1 252 21 42 41 82
40 861 1 902 41 82 81 162

Note: RQP 1 uses forward difference approximations and one itera<ion to solve the perturbed problem
RQP 2 uses forward difference approximations and two iterations to solve the perturbed problem
RQP 3 uses central difference approximations and one iterat:on to solve the perturbed problem
RQP 4 uses central difference approximations and two iterations to solve the perturbed problem

Table 3.1 Comparison of Various Algorithms for 1se in sensitivity analysis

The following observations can be drawn from thi; table.

1. For the Kuhn-Tucker sensitivity equations, most of the work in finding the
parameter sensitivity is involved in the calculation (by finite differences) of the
Hessian of the Lagrangian. However, after the :irst parameter sensitivity is
determined the cost of evaluating successive sersitivity derivatives is reduced to
(n+1) extra function evaluations. :

2. For the first order EDS algorithm, the work required to calculate the parameter
sensitivity does not increase with problem size. However, this algorithm will
not deliver du/dp and this algorithm may not be able to find the correct value for
ox/dp. This will mean that df*/dp will also be inaccurate with this method. If
the problem is fully constrained the accuracy of dx/dp is better but the method
may still provide inaccurate derivatives.

3. For the second order EDS algorithm most of thz work is in the calculation of the
Hessian of the objective function and the Hessian of the constraints. The work
involved for calculation of successive paramete: sensitivities only requires
approximately n+2 extra function evaluations. This algorithm requires the
solution of a quadratic approximating problem ‘or every new value of the
parameter supplied by the user.

4. For the RQP 1 algorithm (forward differencing) is the most efficient of the RQP
methods proposed and seems to be much more efficient than the Kuhn-Tucker
algorithm. The work required to calculate succ:ssive parameter derivatives is
constant (n+1 function evaluations). This algorithm will perform well when Bis

a good approximation and the perturbation Ap s properly chosen.

5. The number of function evaluations for the RC'P 2 algorithm (forward
differencing and 2 iterations of the RQOPT algorithm) grows linearly. The work
required to calculate successive parameter derivatives is constant (2n+2 function
evaluations). The work for calculating success:ve parameter sensitivities may be
reduced because the Hessian approximation wi'l improve after each parameter
sensitivity derivative is approximated, which will eventually reduce the amount
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of work required to solve the perturbed problem.

6. For the RQP 3 algorithm (central differencing) the work involved grows linearly
and the work for calculating successive parameter derivatives is constant (2n+2
function evaluations). An indication of nonlinearity of the sensitivity derivatives
can be indicated by checking for second derivatives of the functions as follows

d2f 3 £+ - 2f* + -
dp? Ap?

(3.46)

This approximation of the second derivatives may rot yield accurate results but it
may be able to indicate that there is curvature present in the problem. Another
advantage of using central differences occurs when the active set changes and
directional derivatives can be approximated.

7. The RQP algorithm with central differencing and 7 iterations of RQOPT is the
most expensive of the proposed RQP algorithms. 'The work required to calculate

successive parameter derivatives 18 constant (4n+2 function evaluations). The
work for calculating successive parameter sensitivities will be reduced if we
allow updating of the Hessian approximation during the RQP iterations, as less
work will be required to solve the perturbed probl:m when the Hessian
approximation is improved.

The above discussion dealt with the number of required function evaluations to
calculate the parameter sensitivities. We did not account for any of the other overhead such
as solving the QP subproblem for the RQP method or solving a quadratic approximating
problem for the second order EDS algorithm.

The overhead associated with using the Kuhn-Tucker sensitivity equations is
relatively small after the first parameter sensitivity is calculzted, this is because if a
factorization (i.e. LU) is used to solve the Kuhn-Tucker sersitivity equations then the
amount of overhead becomes o(n) flops. The overhead for solving the RQP subproblems
will also be realitively small if a good implementation of the RQP method is used (ie.a
proceedure propossed by Gill et. al. (1987) requires anly o{n) flops). The overhead for the
first order EDS method will also be relatively small. However the overhead for the second
order EDS method could be large depending on the problen.

In summary, the RQP based methods are competit:ve with the existing methods.
All variants of the RQP based method require approximately the same number of function

evaluations for small problems (n<5), but considerably ¢ ss for larger problems (n>5).

3,4, POTENTIAL PROBLEMS

One of the main issues that needs to be investigated concerns the Hessian
approximation: will the approximation cOnverge in practice as predicted by the theory? If
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convergence has not taken place then we need to investigate how to improve the Hessian
approximation. Some modifications that can be made to obtain a more accurate Hessian
approximation are discussed in Chapters 4 and 5.

As with the estimation of any gradient by finite difierences, the perturbation step
size Ap and the nonlinearity of the problem will effect accuracy of the derivative
approximation. Rules from Gill, Murray and Wright (1983) or Adelman, Haftka, and Iott
(1986) can be investigated as a means to select the step siz: Ap. An automated selection
proceedure for Ap should be investigated after the initial R'P sensitivity algorithm is
tested.

When using the forward difference option the choize of Ap is even more critical. If
Ap is too small and the optimum of the problem is not kncwn exactly then when the
perturbed problem is solved we may only be seeing a better estimate of x* being found
rather than an estimate of the solution of the perturbed proslem. This will cause the
derivative approximations to be inaccurate. If Ap is too la-ge then we may only be

obtaining trend information for the problem.

All optimization programs incorporate some kind «f convergence criteria that is
based on the relative change in the design variables. This stopping criteria will effect the
calculation of the sensitivity derivatives for all available methods, because there is a
common assumption that the base point is a true optimum. The central difference
approximation may be less sensitive to inexact solutions because the solution of the
perturbed problems will be of a similar degree of accuracy..

When solving the quadratic programming subprotlem some type of convergence
criteria is normally used. How small this tolerance is will effect how much work is needed
to solve the subproblem (Nash 1985). During the early stages of the optimization it is not
advisable to locate the exact solution of the QP subproblem as this may be too expensive.
However once the program is in the region of a minimum the solution of the subproblem
needs to be accurate. Therefore, we expect to use a tight convergence criteria for our QP
solver during our reoptimizations.

3.5. SUMMARY

We have proposed a method and some variants b: sed on the RQP method for
estimating parameter sensitivities which provides sensitiv ty estimates nearly equivalent to
the Kuhn-Tucker method. The method avoids the need for calculating second derivatives
and its efficiency is competitive with current methods. The accuracy of the method
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depends on two major pieces of information, the quality of the Hessian approximation
provided by the RQP method, and the step size of the differen::e parameter used in the

difference formula. Both these aspects of the method will be iscussed in the following
chapters.
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4. Implementation

This chapter will discuss the implementation of the ne ¥ parameter sensitivity
method described in chapter 3. The program used as the basis for testing the new method
was the RQOPT program which is an implementation of an ac tive set RQP method
(Beltracchi and Gabriele, 1987). The discussion begins with a discussion of the
modifications made to RQOPT to perform the necessary calculations, and ends with a
description of the software system developed to calculate par:.meter sensitivities.

4.1. MODIFICATIONS TO ROOPT

Most of the modifications to RQOPT were concentratzd in one of the major areas of
concern for the new sensitivity algorithm, the Hessian approimation. These modifications
are discussed in subsections 4.1.1 and 4.1.2. The line search of RQOPT was also
modified to yield a smoother convergence to the problem solation and this is discussed in
subsection 4.1.3. The final modification discussed in subsection 4.1.4, provided the
option of using a different variable metric update to yield a more accurate Hessian
approximation

4.1.1. Implementation of a Factorized BFS Variable Metric Update

Variable metric updates have been successfully used for the past 20 years for
unconstrained optimization and have been used successfully for approximately the past 10
years for constrained optimization. Variable metric updates #ttempt to build an
approximation to the Hessian matrix using only first order irformation, and solve for the
search direction from the following equation

s = B-1Vf 4.1)
where B represents the approximation to the Hessian, Vf the gradient of the objective
function, and s the search direction of the design variables. Variable metric updates have
been provided in the literature for approximating either the inverse of the Hessian or the
Hessian itself.

Variable metric updates all have the same basic form. They begin with an
approximation to the Hessian matrix, and then update the approximation by some rank one
or rank two correction. The form of the update is normally

Bnew = Bo]d + VVT + WWT (4.2)
where v and w are calculated as some product of the old He ssian approximation, the last

search direction, and the change in the gradient of the objective function.

Several different forms of equation 4.2 have been p-oposed. The most popular
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variable metric update has been the BFS (also known as th: BFGS) which was proposed in
1970 simultaneously by Broyden, Fletcher, Shanno and Goldfarb. The BFS update has
been shown to be the best general purpose variable metric update.

One of the problems associated with the BFS variat le metric update is that it is
effected by the problem scaling. Shanno and Phua (1978) have proposed a self scaling
version of the BFS update. Its use in a RQP algorithm wa:. investigated by Van der Hoek
(1980). He found the self scaling variant with the second (Jren-Spedicato (Oren 1974)
switch seemed to perform the best with the particular RQP algorithm that he was using.

In the mid 1970's several authors proposed updatirg the LDLT factors of the
Hessian approximation with a procedure that could be usec: to stabilize the BFS update in
terms of the numerical noise encountered in the calculation of the update. With the LDLT
update we can be assured that the Hessian approximation 12mains positive definite, this will
assure that the search directions that are generated from (4 1) are downhill. Additionally,
finding the search direction from equation 4.1 becomes a s mple matrix calculation when
using the LDLT update

When variable metric updates are used for RQP me:thods it is normally preferred
that the approximation of the Hessian of the Lagrangian bc updated instead of its inverse.
This is because solution of the QP subproblem requires th: Hessian approximation. The
BFS variable metric update is used by most of the success ul implementations of the RQP
method.

The BFS update that was used in RQOPT is defin::d as

(zBig Y(zBoig)T  w wT (4.3)

B =Bold -
new old ZTBoldz Wi y

where z and w are defined as

Z = Xpew - Xold (4.4)

Y= VxL(Xnew>¥newsUnew) - VxL(Xold:Vnew->Unew ! (4.5)
1 ifzTy >20.2 zTB z

®=<{ 0.82TBz otherwise (4.6)
zTBz - zTy

w=0y+(1-0)Bz 4.7

Where the © term in equation 4.6 and 4.7 was defined by Powell (1977) to help maintain

positive definiteness of the Hessian approximation, unde: normal operation ® is equal to

one. The Hessian approximation is guaranteed to be pos tive definite if zTw is greater than
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zero. The Hessian approximation is not updated by RQOPT f zTw is less than zero.

For this study, the LDLT update for the BFS variable metric (defined in equation
4.3) as described by Gill and Murray (1978) was implementcd (where z and w were
calculated by equations 4.5 and 4.7). This update uses sever:ll matrix transformations to
achieve a stable update. The actual update of the Hessian apjroximation is performed with
a procedure described by Fletcher and Powell (1974) and extended by Gill, Murray, and
Saunders (1975).

In addition to the stability of this update relative to numerical noise, as discussed
above, the LDLT update provides a convenient means for establishing a reset criteria for the
Hessian approximation. The need for a reset of the Hessian approximation is discussed in
the following section.

4.1.2 Condition Number Reset

Occasionally, due to numerical noise or a highly nor linear problem, the Hessian
approximation may become singular or indefinite. When this happens we can no longer be
certain that the resulting search directions will satisfy the descent property that is assumed
by the RQP. The only means to recover from this situation is to reset the approximation to
some known positive definite matrix, which is generally the identity matrix. Early version
of the BFS update were reset every n+1 iterations but this it a conservative approach that
will sometimes erase good information and slow the convergence of the algorithm. The
current thinking is to use a less conservative reset criteria that is based on a condition
number estimate of the matrix with the hope that useful information built up in previous
iterations is used for more iterations and should result in better convergence.

The original version of RQOPT reset the Hessian approximation every time the
active set changed or every n+1 iteration. A change in the ictive set results in a different
QP subproblem to be solved and it was felt that the Hessiaa approximation would no
longer be valid. Using this conservative reset criteria wou'd prove unacceptable if we were
using RQOPT to perform sensitivity analysis. With this ruset criteria, we risk resetting the
Hessian approximation just before the optimum is reached and would be left with only a
few iterations of the method upon which to build an apprcximation. Thus we may have a

very poor Hessian approximation when it comes time to perform the sensitivity analysis.

The reset criteria adopted has been used successfully by several other algorithms
(Powell 1985, Schittkowski 1983, Arora and Tseng 1987). The new resct criteria resets
the Hessian approximation when the estimate of the cond:tion number exceeds a fixed limit.

This estimate can be found by computing
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cond(H)est = %’-‘-“.‘L
min
where din and dmax are the smallest and largest values of the D matrix in the LDLT

factorization.

(4.8)

Using this reset criteria has led to a more stable update yielding faster convergence
for the RQOPT program and more accurate esimates of the Hessian of the Lagrangian.

4.1. lation of the L Muyltiplier Esti

The Lagrange multiplier estimates are an integral part of building the Hessian
approximation. The value of the Lagrange multiplier estimates are used as inputs to the
variable metric update to approximate the Hessian of the Lagrangian function.

The original version of RQOPT calculated the Lagrangt multiplier estimates as the
Lagrange multpliers of the constraints in the QP subproblem. This value of the Lagrange
multiplier estimate is a valid estimate of the true multipliers when a st€p of o.= lisusedin
the line search (Gill and Murray 1979). When this occurs, the estimates should converge
to the true Lagrange multipliers as the problem converges.

A problem can arise, however, in the first few iterations of RQOPT. At the
beginning of a search it is possible thata Lagrange multiplier sstimates produced by the QP
subproblem will be several orders of magnitude larger than true value of the Lagrange
multiplier. If the line search then makes a small step (o « 1), the large value of the
Lagrange multiplier estimate may bias the updating of the Hessian approximation in such a
way that new approximation only sees the constraint associated with the large Lagrange
multiplier. It may then take several iterations before the Hessian approximation is
corrected.

RQOPT was modified to use the following linear intzrpolation to update the value
of the Lagrange multiplier estimates after the line search is completed
Upew = Uold + o(ugp - Uold) 4.9)
When a step length of & =1 is used in the line search (equaiion 3.4) then formula 4.9
updates the Lagrange multiplier esumates to be the estimates delivered by the QP
subproblem. This update was also used by Schittkowski (1983).

The procedure for updating the Lagrange multiplier estimates helped yield a
smoother convergence of the Hessian approximation, beczuse we were able to more
accurately represent the Lagrangian function when we were performing the approximation

updates.
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4.1.4. SR1 update

The SR1 update is a variable metric update that do-:s not require exact line searches
for quadratic convergence, where as the BFS update requi-es exact line searches for
quadratic convergence. Because the RQP method seldom performs exact line searches, it
was felt the SR1 update may be able to obtain a better app:oximation of the Hessian of the

Lagrangian.

A table describing the differences between the BFS. and SR1 update is presented
below

Advantages Disadvaritages
update
BFS  Self Correcting Requires exact line searches
Stable (maintains positive definiteness)
Has a good performance history
SR1 Does not require exact line searches update may be undefined and it is not

guarantecd to maintain positive definiteness of
the Hess:an Approximation. There is not alot of
literature on the performance of this update.

Table 4.1 A comparison of the BFS and SR1 variable metric updates

The stability of the BFS variable metric update has led to its use in almost all RQP
implementations. However Cha and Mayne (1987) report -hat they have tested the SR1
update and found exact convergence of Hessian approxims tions for quadratic functions.
Although the SR1 update lacks the stability of the BFS upcate, we were interested in
comparing the performance of the 2 updates in terms of the Hessian convergence. If the
SR1 update delivers better Hessian approximations than th: BFS update then we will have
to further investigate methods to stabilize the SR1 update.

The SR1 update is defined as follows

(Boigy - Z)(Boigy - Z)T
Bpew = Bold + (4.10)
new = Told yT(Bolay - z)

where y and z are obtained from equation 4.4 and 4.5. Th:s update is undefined when the
denominator is equal to zero. The SR1 update may be undefined even for positive definite
quadratic problems. This problem was addressed by Braytan and Cullem (1979), Cullem
and Brayton (1979).

The symmetric rank one (SR1) update was implemented in both a factored (LDLT)
and unfactored form. In our implementation if the absolute value of the denominator (in
equation 4.10) is less than some small number we use the E.FS update which is described
in section 4.1.1.
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Even though the SR1 update may be undefined, it has ‘he very nice property of not
requiring exact line searches. This is important because in the RQP method we do not
perform exact line searches, and the BFS variable metric methid assumes exact line
searches. Powell (1986) clearly demonstrates the detrimental :ffect of inexact line searches
on the BFS method. The performance of the SR1 update for :olving quadratic problems is
such that after n updates (providing that all updates are defined) the Hessian approximation
will have converged to the true Hessian. Thus we may obtain a better convergence of the
approximation of the Hessian of the Lagrangian if we are able: to use the SR1 update.

Some preliminary results were obtained comparing the BFS and SR1 variable
metric updates and these are discussed in section 5.3.

42 THE CREATIONOFA SYSTEM TO AUTOMATICALLY CALCULATE
PARAMETER SENSITIVITIES

In this section we provide a brief overview of the sofiware system created for
studying parameter sensitivities. The software system is mas le up of three major pieces: a
problem preparation package RQCRE, the RQP algorithm using the modifications
described in the preceding section, RQOPT, and an interactive program RQSEN, that acts
as a post processor/sensitivity analysis module for the RQOPT program. The RQOPT
program was an existing program and has been documented previously (Beltracchi and
Gabriele, 1986). The RQCRE and RQSEN programs were created for this study and will
be briefly described in the following paragraphs. A more dtailed discussion of these
systems is provided in the appendix.

4.2.1 The ROCRE Support System

The RQCRE program is set up to be used as an interactive tool for use with the
RQSEN system. The purpose of the RQCRE program is to remove the chance of errors in
the problem formulation. The RQSEN program requires approximately 30 arrays to be
dimensioned which are automatically dimensions by RQCRE. The RQCRE program also
automatically writes the calling program and data files required by the RQSEN system.

The RQCRE program requires the user to provide basic information about the
problem such as the number of variables, number of equality constraints, number of

inequality constraint, and number of parameters that will be studied.

The RQCRE system then produces a main calling program, a shell of the function
subprogram! used to define the objective function and the constraints, and a data file used
for input into the RQSEN system (sample output is provided in the appendix). The

1 The RQCRE program is not designed to allow the user to enter definitions of the objective function or
constraints, these definitions must be entered manually into the cod:> that was generated by RQCRE.
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RQCRE program aiso sets up the default values for the algorithm parameters used by
RQOPT.

422 The ROSEN program

The RQSEN system was set up as a pre and post processor for the RQOPT
program. The RQSEN system was set up to be an interactive user friendly program for
performing the following basic functions;

1. The system can be used to solve optimal design problems
2. The system can be used to calculate parameter sensit vities

3. The system can be used to conduct studies of large variations in problem
parameters

4. The system is also set up to create sensitivity plots ¢ f that can be used to
perform trade off studies.

A sample session with the RQSEN system illustrating these of tions is presented in the
appendix.

The RQSEN system requires a calling program and a function subprogram
(defining the objective function and the constraints) to be written in FORTRANZ. The
RQSEN system also requires the user to define a data file that contains the algorithm
parameters, and the initial values of the design variables and design parameters. The user

can then direct the RQSEN program to study the sensitivities of only certain parameters.

The RQSEN program first produces optimum designs. Once the problem has been
optimized the RQSEN system can be used to produce parameter sensitivity derivatives,
which can then be used to study the effect on the optimum o large variations in the
parameters. The RQSEN system is also set up so that an ex'ernal graphing program can be
used to create plots of the optimum sensitivities for large vas iations in the parameters can be
studied. A typical plotis presented in figure

2 The RQCRE system can be used as an aid in creating the calling pregram and function subprogram.
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Figure 4.1 A plot of the Sensitivity of the Optimum of test problem 1 to p(3)

Plots similar to this one can also be generated for the dlesign variables, Lagrange
multipliers and values of the constraints. These plots can the be used to assess the
characteristics of the problem (such as nonlinearity and changes in the active set). Using
these plots to assess the characteristics of the problem will bx discussed in the results part

of chapter 5. Plots similar to figure 4.1 are presented in the :-ppendix for problems in the
test set.



5. Numerical Experiments

This chapter describes the numerical experiments that have been conducted to date
on the new sensitivity method. We begin by discussing tl:e initial test set used and any
special features of the selected problems. Next, we discu:s testing that has been performed
comparing the accuracy of the known Hessian to the apprximations obtained, which
includes comparisons of the BFS and SR1 updates. In th: third section, the accuracy of
the sensitivity derivatives obtained with the new sensitivity algorithm is assessed against
the known results. This section also compares the effect of choosing a central or forward
difference formula and the effect of the step size Ap. The final section presents some

conclusions drawn from this initial testing.

5.1. INITIAL TEST SET

A two phase testing program has been formulated for studying the effectiveness of
the new method for estimating parameter sensitivity. The first phase was to develop a set
of test problems for which the parameter sensitivities could be exactly determined using the
Kuhn-Tucker equations. This required that any second order information needed could be
determined analytically. Choosing problems of this type would allow a direct comparison
of the sensitivity results produced by the new method with the exact sensitivities and also
allow the comparison of the BFS and SR1 Hessian apprcximations. From this study we
hope to develop some insight into several questions conceming the algorithm such as:
proper choices for algorithm parameters (i.e. the proper size of Ap), what is the most
reliable Hessian approximation, how close does the Hessian approximation have to be to
achieve good results, does updating the Hessian approxiniation during the sensitivity
analysis significantly improve the estimate, and which of -he variants (forward/central
difference approximations with one or two iterations of R QOPT) described in chapter 3

provides the most consistent results.

The second phase of the testing would consist of tzsting the algorithm against a set
of engineering problems where second order information would not be available. Here the
results obtained from the sensitivity algorithm would be compared to actual reoptimization
results to assess its accuracy. In the time allotted for this study, only the first phase of
testing has been completed and is reported on here.

The problems making up the initial test set are presented in the appendix of this
report. We have experimented so far with 4 test problem: that have a total of 12
parameters. The problems possess both linear and nonlinear behavior. We expect to
expand this test set in the near future. Plots of the optimum sensitivity for selected
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problems and parameters are also presented in the appencix.

5.2.  CONVERGENCE OF THE HESSIAN APPROXIMATION

The derivation given in section 3.2.1 showed that equivalence of the new method
with the Kuhn-Tucker method depends on the accuracy of the Hessian approximation
obtained from the RQP method. Using this initial test set we hope to observe how closely
the Hessian approximation comes to the exact Hessian and draw some initial conclusions
on its importance to the accuracy of the results.

A measure of the closeness of the Hessian approximation to the true Hessian can be
defined using the Frobenius norm as

€H = ” H - Happrox ”F (51)
This measure has been used in the past to compare the coavergence of different variable
metric updates (Dennis and Schnable 1983).

For test problem 1 the true Hessian of the Lagran sian is

H=[*5" 2%
From the RQOPT program we obtained the following Hessian approximation with the BFS
update

oS00 5550
which gave us a Eqgggg = 1.396.

Using the SR1 update from the same starting point, we obtained the following
Hessian approximation

w2535 15
with gives a eggg; = 0.0164. This represents a large improvement in the closeness of the
Hessian approximation. However, even though the Hes:ian approximation for the SR1
update is much better than the Hessian approximation for the BFS update the problems
were solved in the same number of iterations (and functic-n/constraint evaluations) of
RQOPT.

The results given above were obtained with a val e of § =1.1. The & parameter
controls the size of the active set during the course of an uptimization; a large d will cause

more near active constraints to be considered as part of tte active set, a small value of 6 will
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allow only truly active constraints to be considered. Having the propet set of active
constraints identified early in the optimization could effect the ac:uracy of the Hessian
approximation. To test this, a larger value of d (8 =10.1) was closen and the problem
resolved obtaining the following Hessian approximations

2.329 .3227
Hprs=| 3227 2.264]

HSRI=[2.6394 .00093

.00093 2.5990

the values of EHpFs = 0.6019 and €HsRr1 = 0.00174 were obtained. These improved
Hessian approximations result because RQOPT was able to identify the correct active set of
constraints sooner. With the large value of & RQOPT required the same number of

iterations to solve the problem, but required more constraint €v aluations.

Another implementation issue that needs investigation soncems whether the
Hessian approximation obtained from the optimization should be further updated during the
reoptimizations performed to estimate the sensitivities. To study the effect of allowing
Hessian updates during the reoptimization, the sensitivity with respect to parameter 3in
problem 1 was estimated with this option enabled. The Hessin approximation that was
used at the start of the sensitivity analysis is the Hessian approximation that was obtained
with the BFS update and § = 1.1. After estimating the sensit.vity, we obtained the

following Hessian approximation

i _[2.63975 00013
BFS=| 00013 2.59957

with €EHpEs = 0.00053. This indicates that there is a possibi:ity for improving the Hessian

approximation if we allow updating during the sensitivity analysis.

Tests for problem 2 were also performed, whose i€ Hessian of the Lagrangian is
given by

511
H=[151]
11535

Using the starting point provided in the problem descripticn, we obtain the following value
of the Hessian approximation (from RQOPT) when we us: the BFS update

1.9976 2.9976 1.9976
0.49763 1.9976 4.4976

with egggs = 3-000- When we use the SR1 update we ot tain the following value of the

4.4976 1.9976 0.49763
HBFS-’-{ ]

Hessian approximation
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€Hsg; = 3-0. If we allow the Hessian matrix to be updated while estimating the sensitivity
of p1 with a Ap = 0.0001 we obtain

Hpgs=| 1.0070 4.9964 0.9665

r4.9448 1.0070 1.17491|
[1.1749 0.9665 4.3990

511
HSR1= 1 5 1 ]
L1 15
with eggps = 0.6541 and with eggg; = 0.00. This represents a significant improvement

of the Hessian approximations, particularly when the SR1 update is used.

If we calculate the sensitivity of ps and use the SR1 update we also obtain exact
convergence of the Hessian approximation. However if w= use the BFS update we do not
obtain exact convergence but an improvement similar to thit of the first problem is
achieved.

For Test problem 3 the Hessian of the Lagrangian is

1200 0
0800
H{o 0 10 o}
0004
If we use the starting point that was provided in the problem description, the approximation
to the Hessian of the Lagrangian (form RQOPT) using the BFS update is
9.785 -0.4657 -2.502 -0.9879
Hrrce -0.4657 7.7556 -0.5500 0.0174
BFS=.2.502 -0.5500 4.062 0.7464
-0.9879 0.0174 0.7464 2.1579
with eqpps = 7.76. If we use the SR1 update to solve the problem then we obtain the

following approximation to the Hessian

-0.02493 7.9792 -0.03037 0.01095
-0.04194 -0.03037 9.9679 0.00222
0.02212 0.01095 0.00222 4.01399

with a egsg; = 0-130. This represents a major improvemrent in the Frobenius norm.

11.9744 -0.02493 -0.04194 0.02212
Hsm{

For Test problem 4 the Hessian of the Lagrangian is

6.72 -4.0 -2.0 6.4 -2.0
-4.0 9.4006 -1.2 -6.2 6.4
H -2.0 -1.2 44 -1.2 -2.0
6.4 -6.2 -1.29.3418 -4.0
2.0 6.4 -2.0 -4.0 6.2688

48



using the starting point that was defined in the appendix, RQOPT with the BFS update
yields the following Hessian approximation
6.280 -3.963 -1.417 6.458 -1.924"
-3.963 8.052 -0.561 -6.247 5.775
Hpgs< -1.417 -0.561 1.548 -0.932 -1.449

6.458 -6.247 -0.932 9.3465 -4.024
-1.924 5.775 -1.449 -4.024 5.974 -

with €HRBFS = 3.6226.

When we attempted to use the SR1 update, the He ssian approximation became
nearly singular after 5 iterations and the Hessian approximation was automatically reset to
the identity matrix by RQOPT. RQOPT delivered the following Hessian approximation

4.6611 -4.8848 0.1290 5.2854 -3.5329
-4.8848 7.5178 -.1721 -7.0517 4.7:40
Hgrio 0.1290 -0.1721 1.0046 .1862 -.1245

5.2854 -7.0517 0.1862 8.6328 -5.0996
-3.5329 4.7140 -.1245 -5.0996 4.4094

with eggg; = 9.307. The inaccuracy of this Hessian apprcximation results because a total
of only 7 iterations were needed to solve the problem, and a reset occurred after the fifth
iteration. Therefore, only 2 iterations could be used to bu:ld the Hessian approximation.
In the near future we will investigate why the Hessian approximation became nearly
singular after the 5th iteration.

A summary of the results of this section are presented in the Table 5.1 where €
represents the error between the true Hessian and the iden-ity matrix used at the outset of
the optimization. Using the BFS update we see that we were not able to converge to the
exact Hessian but the inaccuracies do not seem to be large. As mentioned before, this may
be due to RQOPT not using exact line searches which the BFS method assumes. Allowing
updating of the Hessian approximation during the sensitivity analysis seems to improve the
estimate of the Hessian of the Lagrangian.

Using the SR1 update we were able to obtain bettcr estimates of the Hessian of the
Lagrangian for both problem 1 and 3. For problem 2 the Hessian of the Lagrangian that
was produced by the SR1 update had converged in a proj::cted or reduced sense. The
inaccuracies in problem 4 are due to a near singular point which is discussed above.

Problem €0 EBFS €SR1 £BFS with updating
1 2.291 1.396 0.061 0.0005
2 7.348 3.0000 3.0 0.654
3 15.93 7.76 0.130 5.186
4 23.276 3.6226 9.307 1.698

Table 5.1 A comparison of the Frobenius norms ¢ f the Hessian approximations
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5.3. RE TS

This section presents a comparison of the sensitivit derivatives calculated by the
new method with the known sensitivities for the problems in the initial test set. We also
present a means that can be used to compare the accuracy ¢ f the sensitivity derivatives

graphically.

The measure for accuracy that will be used was alto used by Sandgren (1977).
Sandgren compared the closeness of the optimum design point generated to known
optimum point, and the closeness of the value of the known optimum objective function
value to the generated value of the optimum plus a penalty for any violated constraints.
Sandgren defined the following measures

f(x) -f(x*) "
ef%ABS[—f(X"") ] for f(x*) # 0 (5.2)
ABS[f(x)] for f(x*) =0

where f(x*) is the true value of the optimum and f(x) is th:: value returned by the
algorithm. The total error is calculated as

nineq neq
g =Ef+ _21< g> + -21( h;) (5.3)
_,:

1=
where <a >=(0,ifa>01-aif a <0). The g measure is 1sed because it does not bias any

constraints.

The relative error in the x vector is defined as

n .y k2
AL

in equation 5.4 if x;* is equal to zero then the relative erro- in xj is defined as the value of

Xj.

We will define the relative error in the gradient (df ¥/dp) of the objective function as
follows
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dfx  df¥

——est -
dp dp df*
AB I for b # 0
€d/dp = dp (5.5)
df* df*
ABS| —=—es f —_—=
[dp ‘} °r 3

We will define the relative error in 9x*/dp and du*/dp in the sanie manner as €x and denote
these values as €gx*/gp and €gu*/op respectively. Eight digits of .ccuracy were maintained

in calculating the relative errors.

The optimal sensitivities for the test problems were calcuilated using the Kuhn-
Tucker method with exact derivatives. Once the optimal sensiti vities for the problems were
known, experiments were conducted using RQSEN on the initial test set. Both the forward
difference and central difference variants of the RQP sensitivity algorithm were tested with
large and small values of perturbation for the parameters. For i1 cases, RQOPT! was
allowed to perform two iterations to optimize the perturbed pro slem. However, there were
some instances where RQOPT required only one iteration to me¢et the convergence criteria.
A spreadsheet was used to automate the calculation of the relative errors in the derivatives
using the formulas given above. Summary tables showing the relative errors in the
calculation of the derivatives will be presented for each of the problems.

Plots of the optimal sensitivities for large variations in the parameters were also
created for all of the parameter sensitivities that were studied. The interesting plots will be
included in the appendix of this report. These plots can be used to help asses the
nonlinearity in the sensitivity derivatives, and to help to underttand the effect of changes in
the active set.

The rest of this section presents tables and figures showing the relative accuracy of
the sensitivity derivatives. A brief discussion of the results for each problem is offered.

513.1 Problem1

Problem 1 possesses three parameters for study. Sensitivities of the objective
function, design variable, and Lagrange multipliers for each parameter were estimated
using the four variations of the basic algorithm. The results are compared against the exact
sensitivities in Tables 5.2 - 5.7. In most cases, the estimated sensitivities agree with the
known sensitivities with few exceptions. As might be expected, the central difference
approximations in all cases provides better estimates than the forward difference
approximations. No strong conclusions with respect to the choice of Ap can be drawn
from this problem. For parameter 1, both sizes of Ap provide exact sensitivities. For

1The gradients of the objective function and constraints were calculated 1.sing central and forward difference
approximations.
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parameter 2, the larger value of Ap provides better results wt ile for parameter 3, the
smaller value of Ap provides the best results. A review of the sensitivity plot for this

parameter (figure A.2) shows that the sensitivities for this parameter are nonlinear.

In conclusion, for this problem, using a central difference approximation with either
step size for Ap resulted in no significant errors in the sensit vity estimates.

Kuhn Tucker Central Difference Appm};imag' ons

Method AP =2% relative error AP=0.1%  relative error
df/dp 1.0000000 1.00000000 0.00E+00 1.00000000 0.00E+00
dx;/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
dxp/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
€x 0.00E+00 0.00E+00
duy/dp -0.2000000 -0.200000 0.000E+00 -0.200000 0.000E+00
duy/dp 0.4000000 0.400000 0.000E+00 0.400000 0.000E+00
€u 0.00E+00 0.00E+00

Table 5.2 Central Difference Approximations to the Parame ter Sensitivities for problem 1
parameter 1

Kuhn Tucker Forward Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp  1.0000000 1.06000000 -6.00E-02 1.00300000 -3.00E-03
dxy/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
dxp/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
€x 0.00E+00 0.00E+00
duy/dp -0.2000000 -0.2000301  -1.503E-04 -0.2006318  -3.159E-03
duy/dp 0.4000000 0.39984547  3.863E-04 0.39693215 7.670E-03
€u 4.15E-04 8.29E-03

Table 5.3 Forward Difference Approximations to the Par:.meter Sensitivities for problem 1
parameter 1
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Kuhn Tucker

Method

df/dp  -0.3000000

dx;/dp 0.1000000
dxo/dp -0.2000000
€x

duy/dp -0.1304000
duy/dp 0.0008000

Eu

Central Difference Approximations

AP =2%
-0.30000000

0.10000011
-0.20000030

-0.13040090
0.00079973

relative error
0.00E+00

-1.100E-06
3.000E-06

3.20E-06

-6.902E-06
3.363E-04

3.36E-04

AP=0.1%
-0.30000000

0.10000359
-0.20000320

-0.13040262
0.00080051

relative error
0.00E+00

-3.590E-05
-1.600E-05

3.93E-05

-2.009E-05
-6.325E-04

6.33E-04

Table 5.4 Central Difference Approximations to the Para neter Sensitivities for problem 1

parameter 2

Kuhn Tucker
Method

df/dp  -0.3000000

dxi/dp 0.1000000
dxo/dp -0.2000000

€x

duy/dp -0.1304000
duy/dp 0.0008000

€y

F | Diff N .
AP =2% relative error AP=0.1%
-0.30000000 0.00E+00 -0.30000000
0.10004811 -4.811E-04 0.10000681
-0.20017630 -8.815E-04 -0.20000665

1.00E-03
-0.13061831 -1.674E-03 -0.12851547
0.00114555 -4.319E-01 0.00999551
4.32E-01

relative error
0.00E+00

-6.810E-05
-3.325E-05

7.58E-05

1.445E-02
-1.149E+01

1.15E+01

Table 5.5 Forward Difference Approximations to the Par imeter Sensitivities for problem 1

parameter 2
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Kuhn Tucker Central Difference Approxim:ations

Method AP =2% relative error AP=0.1% relative error
dff/dp -0.4000000 -0.40000000 0.00E+00 -(.40000000 0.00E+00
dxy;/dp 1.2000000 1.19995460 3.783E-05 1.19999990 1.000E-06
dxy/dp 0.6000000 0.60007142 -5.952E-05 (.60000018 -3.000E-07
£x 7.05E-05 1.04E-06
duy/dp 0.4048000 0.40501856 -5.399E-04 (40480055 -1.359E-06
duy/dp -0.5896000 -0.58972201 -2.069E-04 -(1.58960030 -5.088E-07
£u 5.78E-04 145E-06

Table 5.6 Central Difference Approximations to the Parametes Sensitivities for problem 1
parameter 3

Kuhn Tucker Forward Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp -0.4000000 -0.36400000 9.00E-02 1).39820000 9.00E-02
dx;/dp 1.2000000 1.20029290 -2.441E-04 1.20001670 -1.392E-05
dxy/dp 0.6000000 0.59484082  8.599E-03 1).59973857 4.357E-04
€x 8.60E-03 4 .30E-04
duy/dp 0.4048000 0.39514199  2.386E-02 9.40367242 2.786E-03
duy/dp -0.5896000 -0.57797893 1.971E-02 -(.59207284 -4.194E-03
€u 3.09E-02 5.03E-03

Table 5.7 Forward Difference Approximations to the Parame er Sensitivities for problem 1
parameter 3

5.3.2 Problem2

Tables 5.8 - 5.11 present results obtained for the two parameters of problem 2.
There is some significant disagreement between the known ard estimated sensitivities for
parameter 1 in each of the variations tested. The inaccuracies seem to occur due to the
Hessian approximation not converging. The cause of this is likely due to RQOPT not
using exact line searches, which the BFS variable metric update assumes. In this case,
possibly the SR1 update would produce better results. The results for parameter 2 are

excellent for all variations.

The major conclusion to draw from this problem is that the convergence of the

Hessian approximation can be a critical factor in the success »f the new method.
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Kuhn Tucker

Method
df/dp -7.0000000
dxi/dp 2.0888889

dxo/dp -2.1666667
dxa/dp -0.9166667

€x

du;/dp -4.6666667
€u

dgy/dp -6.00000000

€
'Igablc 5.8 Central Difference Approximation

parameter 1

Kuhn Tucker
Method

df/dp  -7.0000000

dxy/dp 2.0888889
dxo/dp -2.1666667
dx3/dp -0.9166667

€x

duy/dp -4.6666667
€
dgo/dp -6.00000000
£

g

Table 5.9 Forward Difference Approximations to the Par::meter Sensitivities for problem 2

parameter 1

Central Difference App :oximations

AP =2%
-7.00000000
2.1593080

-2.1459360
-1.0143604

-4.5219200

-6.1756450

relative error

-143E-11

-3.371E-02
9.568E-03
-1.066E-01

1.12E-01

3.102E-02
3.10E-02

-2.927E-02
2.93E-02

AP=0.1%

-7.00000000

2.1598250
-2.1459879
-1.0139152

-4.5311680

-6.1738965

E | Diff ) .
AP=2.% relatve error AP=0.1%
-7.00000000 -1.43E-11 -7.00000000
2.2087420 -5.738E-02 2.2379818
-2.1161414 2.332E-02 -2.1100841
-1.1367750 -2.401E-01 -1.1301356
248E-01

-4.4230730 5.220E-02 -4.3803787
5.22E-02

-6.43386710 -7.231E-02 -6.3725934
7.23E-02
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relative error

-143E-11

-3.396E-02
9.544E-03
-1.061E-01

1.12E-01

2.904E-02
2.90E-02

-2.898E-02
2.90E-028

s to the Pararheter Sensitivities for problem 2

relative error

-143E-11

-5.738E-02
2.332E-02
-2.401E-01

2.48E-01

5.220E-02
5.22E-02

-7.231E-02
7.23E-02



Kuhn Tucker Central Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp 12.00000000 12.00000000 0.00E+00 12.00000000 0.00E+00
dxy/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
dxydp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
dxs/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
£x 1.73E-08 1.73E-08
duy/dp 2.33333333 2.3333333 1.429E-08 2.3333335 -7.143E-08
Eu 1.43E-08 7.14E-08
dgy/dp 2.00000000 2.0000000 0.000E+00 2.0000000  0.000E+00
Eg 0.00E+00 0.00E+00

Table 5.10 Central Difference Approximations to the Parareter Sensitivities for problem 2
parameter 2

Kuhn Tucker Forward Difference Approximations

Method AP=2.% relative error AP=0.1% relative error
df/dp 12.00000000 12.00000000 0.00E+00 12.00000000 0.00E+00
dx;/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
dxo/dp 0.33333333 0.3333333 1.000E-08 0.3333336 1.000E-08
dxs/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
£x 1.73E-08 1.73E-08
duy/dp 2.33333333 2.3333333 1.429E-08 2.3333335 1.429E-08
€y 1.43E-08 1 43E-08
dgy/dp 2.00000000 2.0000000 0.000E+00 2.0000000  0.000E+00
£g 0.00E+00 0.00E+00

Table 5.11 Forward Difference Approximations to the Pa-ameter Sensitivities for problem 2
parameter 2

5.3.3_ Problem 3

Problem 3 possesses 3 parameters for study, and 'he results are presented in Tables
5.12 - 5.17. Again, the central difference approximation: produce the better results, with
the small step perturbation better than the large step pertu “bation for the first two
parameters. The accuracy of the estimates are good in ccmparison with the known

sensitivities.
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Kuhn Tucker

Method

df/dp -8.0000000

dxi/dp -1.1471984
dxp/dp -0.3342830
dxa/dp -0.2279022
dxs/dp -3.5403608

Ex

du;/dp-67.3428300
dus/dp 55.4605800

&u

dgo/dp -1.6600260
Eg

Central Difference Approxirnations

AP =2%
-8.0000001
-1.1551824
-0.3360517

-0.2189132
-3.5312020

-67.5423370
55.6363930

-1.6579776

relative error
-8.75E-09

-6.960E-03
-5.291E-03
3.944E-02
2.587E-03

4.05E-02

-2.963E-03
-3.170E-03

4.34E-03

1.234E-03
1.23E-03

AP=0.1%
-3.0000001
-1.1485459
-).3355475

-.2265911
-3.5390270

-67.3399900
55.5155000

-1.6595000

relative error
-8.75E-09

-1.175E-03
-3.783E-03
5.753E-03
3.767E-04

6.99E-03

4.217E-05
-9.903E-04

9.91E-04

3.169E-04
3.17E-04

Table 5.12 Central Difference Approximations to the Parametcr Sensitivities for problem 3

parameter 1

Kuhn Tucker

Method

df/dp  -8.0000000

dxy/dp -1.1471984
dxp/dp -0.3342830
dxs/dp -0.2279022
dxa/dp -3.5403608

€x

duy/dp-67.3428300
dus/dp 55.4605800

€y
dgy/dp -1.6600260
Eg

Table 5.13 Forward Difference Approximations to the Parame ter Sensitivities for problem 3

parameter 1

Forward Difference Approximations

AP =2%
-8.0000001
-1.0434709
-0.3298696

-0.2847166
-3.5084682

-62.2695100
52.1090250

-1.6647592

relative error
-8.75E-09

9.042E-02
1.320E-02
-2.493E-01
9.008E-03

2.66E-01

7.534E-02
6.043E-02

9.66E-02

-2.851E-03
2.85E-03
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AP=0.1%
-3.0000001

-1.1427923
-).3378248
-0.2292447
-3.5376210

-65.8998810

55.1460460

-1.6589239

relative error
-8.75E-09

3.841E-03
-1.060E-02
-5.891E-03
7.739E-04

1.27E-02

6.578E-03
5.671E-03

8.68E-03

6.639E-04
6.64E-04



df/dp

dx;/dp
dxp/dp
dxs/dp
dx4/dp

€x

duy/dp
dus/dp

€y
dgy/dp
Eg

Kuhn Tucker

Method
0.0000000
0.0000000
0.0000000

0.0000000
0.0000000

0.0000000
0.0000000

1.00000000

Central Difference Apj roximations

AP =2%
0.0000000
0.0000000
0.0000000

0.0000000
0.0000000

0.0000000
0.0000000

1.0000000

relative error

0.00E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.00E+00

0.000E+00
0.000E+00

0.00E+00

0.000E+00
0.00E+00

AP=0.1%

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000

0.0000000
0.0000000

1.0000000

relative error
0.00E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.00E+00

0.000E+00
0.000E+00

0.00E+00

0.000E+00
0.00E+00

Table 5.14 Central Difference Approximations to the Par.:umeter Sensitivities for problem 3
parameter 2

Kuhn Tucker Forward Difference Ajproximations
Method AP =2% relative error AP=0.1% relative error
df/dp  0.0000000 -2.200E-13 2.200E-13 -1.660E-12 1.660E-12
dx;/dp 0.0000000 4.150E-05 -4.150E-05 8.316E-04 -8.316E-04
dxy/dp 0.0000000 -3.300E-05 3.300E-05 -6.601E-04 6.601E-04
dxs/dp 0.0000000 -2.020E-05 2.020E-05 -4.050E-04 4.050E-04
dxs4/dp 0.0000000 -3.090E-05 3.090E-05 -6.180E-04 6.180E-04
Ex 6.46E-05 1.29E-03
duy/dp  0.0000000 8.840E-03 -8.840E-03 1.769E-01 -1.769E-01
duz/dp 0.0000000 -1.270E-02 1.270E-02 -2.553E-01 2.553E-01
£u 155E-02 3.11E-01
dgy/dp 1.00000000 1.0000100 -1.000E-05 1.0020100 2.010E-03
g 1.00E-05 2.01E-03

Table 5.15 Forward Difference Approximations to the Parameter Sensitivities for problem 3
parameter 2
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Kuhn Tucker Central Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp -10.0000000 -9.99999986 [ 4E-08 -9.93999986 1.4E-08
dxy/dp 1.3057920 1.3055639 1.747E-04 1.3079005 -1.615E-03
dxy/dp 0.5460588 0.5465549 -9.085E-04 0.5481210 -3.777E-03
dxs/dp -1.0541310 -1.0523005 1.737E-03 -1.0520338 1.990E-03
dxe/dp -2.3741690 -2.3704118 1.583E-03 -2.2720509 8.921E-04
€x 2.53E-03 4.65E-03
duy/dp 55.4605800 55.4057600 9.884E-04 55.2658650 1.708E-03
dus/dp-56.5052230 -56.4808140 4.320E-04 -56.¢128710 -7.214E-03
£n 1.08E-03 741E-03
dgy/dp 0.67758780 0.6766357 1.405E-03 0.6767562 1.227E-03
£ 141E-03 1.23E-03
'Igablc 5.16 Central Difference Approximations to the Parameter Sensitivities for problem 3
parameter 3

Kuhn Tucker Forward Difference Approxir iations

Method AP =2% relative error AP=0.1% relative error
df/dp -10.0000000 -9.99999986  1.4E-08 -9.99999986 1.4E-08
dx/dp 1.3057920 1.3726972 -5.124E-02 1.3151920 -7.199E-03
dxp/dp 0.5460588 0.5453465 1.304E-03 0.5489030 -5.209E-03
dxa/dp -1.0541310 -0.9886692 6.210E-02 -1.0457860  7.916E-03
dx4dp -2.3741690 -2.3442141 1.262E-02 2213672333 2.921E-03
€x 8.15E-02 1.23E-02
duy/dp 55.4605800 56.8153210 -2.443E-02 555101970 -8.946E-04
dus/dp-56.5052230 -56.9128710 -7.214E-03 .56 7627370 -4.557E-03
Eu 2.55E-02 4 .64E-03
dgo/dp 0.67758780 0.6668760 1.581E-02 C.6757969  2.643E-03

1.58E-02 2.64E-03

g

Table 5.17 Forward Difference Approximations to the Parameter Sensitivities for problem 3
parameter 3

5.3.4 Problem4

The final problem in the test set contains 4 parameters, the estimated sensitivities are
presented in Tables 5.18 - 5.23. As before, the central difference approximations produce
the best results, and for this problem, the small step perturbatinn performs best. Excellent

agreement was achieved for all the parameters in this problem
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df/dp

dxy/dp
dxa/dp
dxa/dp
dxs/dp
dxs/dp

Ex

dus/dp
dus/dp
due/dp
dug/dp

&

Kuhn Tucker

Method

0.517404073

-0.40000000
0.09729967
-0.20000000
0.28602513
-0.06773997

0.40709971
-0.05662417
0.34730309
0.01908492

Central Difference Apyroximations

AP =2%
0.51740407

-0.4000000
0.0972994
-0.2000000
0.2860244
-0.0677393

0.4071024
-0.0566248
0.3473052
0.0190855

relative error

0.00E+00

0.000E+00
2.960E-06
0.000E+00
2.447E-06
9.994E-06

1.07E-05

-6.681E-06
-1.038E-05
-6.191E-06
-3.280E-05

3.56E-05

AP=0.1%

relative error

0.51740407 0.00E+00

-0.400000
0.097300
-0.200000
0.286026
-0.067741

0.407102
-0.056625
0.347305
0.019086

0.000E+00
-3.710E-06

0.000E+00
-3.077E-06
-1.247E-05

1.34E-05

-6.731E-06
-1.038E-05
-6.219E-06
-3.233E-05

3.52E-05

Table 5.18 Central Difference Approximations to the Par: meter Sensitivities for problem 4
parameter 1

Kuhn Tucker Forward Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp  0.517404073 0.51740407  0.00E+00 0.51740407 0.00E+00
dx,/dp -0.40000000 -0.4000000 0.000E+00 -0.400000 0.000E+00
dxo/dp 0.09729967 0.0973210  -2.193E-04 0.097289 1.053E-04
dxs/dp -0.20000000 -0.2000000 0.000E+00 -0.200000 0.000E+00
dx4/dp 0.28602513 0.2860770  -1.814E-04 0.286000 8.713E-05
dxs/dp -0.06773997 -0.0677900  -7.388E-04 -0.067716 3.548E-04
Ex 7.92E-04 3.80E-04
dus/dp 0.40709971 0.4073857 -7.025E-04 0.407116 -4.073E-05
dus/dp -0.05662417 -0.0565732 8.997E-04 -0.056623 2.283E-05
dug/dp 0.34730309 0.3475276 -6.464E-04 0.347315 -3.481E-05
dug/dp 0.01908492 0.0190319 2.780E-03 0.019083 9.583E-05
& 3.07E-03 1.12E-04

Table 5.19 Forward Difference Approximations to the Pa-ameter Sensitivities for problem 4

parameter 1



df/dp
dx,/dp

Kuhn Tucker

Method

0.306110869

0.00000000
-0.14711868
0.00000000
-0.04916518
0.09817962

-0.05662417
0.05051545

p -0.06156394

0.00240162

Central Difference Approximations

AP =2%

0.30611087

0.0000000
-0.1471186
0.0000000
-0.0491649
0.0981794

-0.0566248
0.0505156
-0.0615644
0.0024015

relative error

0.00E+00

0.000E+00
6.797E-07
0.000E+00
4.841E-06
2.332E-06

5.42E-006

-1.063E-05
-3.662E-06
-6.903E-06

3.935E-05

4.15E-05

AP=0.1%
0.30611087

0.000000
-0.147119
0.000000
-0.049165
0.098179

-0.056625
0.050516
-0.061564
0.002402

relative error

0.00E+00

0.000E+00
4.758E-07
0.000E+00
3.620E-06
1.742E-06

4.05E-06

-1.038E-05
-5.424E-06
-71.115E-06
-2.373E-06

1.39E-05

Table 5.20 Central Difference Approximations to the Para neter Sensitivities for problem 4
parameter 2

Kuhn Tucker Forward Difference Apjroximations

Method AP =2% relative error AP=0.1% relative error
df/dp 0.306110869 0.30611087  0.00E+00 0.30611087 0.00E+00
dx;/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxo/dp -0.14711868 -0.1470723 3.150E-04 -0.147117 1.196E-05
dxs/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxs/dp -0.04916518 -0.0490525 2.292E-03 -0.049161 8.675E-05
dxs/dp 0.09817962 0.0980709 1.107E-03 0.098176 4.190E-05
€y 2.56E-03 9.71E-05
dus/dp -0.05662417 -0.0570971 -8.352E-03 -0.056648 -4.279E-04
dus/dp 0.05051545 0.0510986 -1.154E-02 0.050545 -5.817E-04
dug/dp -0.06156394 -0.0620483 -7.868E-03 -0.061589 -4.015E-04
dug/dp 0.00240162 0.0024686 -2.790E-02 0.002405 -1.404E-03
€ 3.23E-02 1.63E-03

Table 5.21 Forward Difference Approximations to the Par.imeter Sensitivities for problem 4
parameter 2
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Kuhn Tucker ntral Difference A ximations

Method AP =2% relative error AP=:0.1% relative error
daf/dp 1 183954566 1.18395457 0.00E+00 1.13395457 0.00E+00
dxy/dp -0.20000000 -0.2000000 0.000E+00 -0.250000 0.000E+00
dxo/dp 0.09408231 0.0940821 2.689E-06 0.094082 2.317E-06
dxs/dp -0.35000000 -0.3500000 0.000E+00 -0.250000 0.000E+00
dx4/dp 0.22881747 0.2288169 2.666E-06 0.228817 2.273E-06
dxs/dp 0.02931310 0.0293137 -2.030E-05 0.(29314 -1.723E-05
€x 2.06E-05 1.75E-05
dus/dp 0.34730308 0.3473054 -6.709E-06 0.347305 -6.277E-06
dus/dp -0.06156394 -0.0615644 -8.089E-06 -0.061564 -7.115E-06
dus/dp 0.72069515 0.7206968 .2.248E-06 0.720697 -2.456E-06
dus/dp 0.1 5964688 0.1596474 -3.382E-06 0.159647 -3.570E-06
€u 1.13E-05 1.04E-05

Table 5.22 Central Difference Approximations to the Paramete! Sensitivities for problem 4
parameter 3

Kuhn Tucker Forward Difference Approximations

Method AP =2%  relative error \P=0.1% relative error
df/dp 1.183954566 1.183954566 0.00E +00 1.18395457 0.00E+00
dx,/dp -0.20000000 -0.2000000 0.000E+00 -0.200000 0.000E+00
dxo/dp 0.09408231 0.0941409 -6.226E-04 0.094083  -2.07 3E-06
dxz/dp -0.35000000 -0.3500000 0.000E+00 0.350000 0.000E+00
dxs/dp 0.22881747 0.2289599 -6.226E-04 0.228818 -2.098E-06
dxs/dp 0.02931310 0.0291757 4.687E-03 0.029313 1.559E-05
€x 4.77E-03 1.59E-05
dus/dp 0.347 30308 0.3485794  -3.67 5E-03 0.347369 -1 .895E-04
dus/dp -0.06156394 -0.0614102 2.497E-03 -0.061557 1.153E-04
dus/dp 0.72069515 0.7229895 -3.184E-03 0.720811 -1.611E-04
dus/dp O. 15964688 0.1595192 8.000E-04 0.159641 3.620E-05
€4 5.52E-03 2.77E-04
Table 5.23 Forward Difference Approximations to the Para:neter Sensitivities for problem 4
parameter 3
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Kuhn Tucker Central Difference Aprroximations

Mcthod AP =2% relative error AP=0.1% relative error
df/dp  0.010389619 0.01038962  0.00E+00 0.01038962 0.00E+00
dxy/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxo/dp -0.03975934 -0.0397594 -8.803E-07 -0.039759 -1.082E-06
dxs/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dx4/dp 0.07614087 0.0761408 1.116E-06 0.076141 1.366E-06
dxs/dp 0.15499104 0.1549911 -5.162E-07 0.154991 -6.452E-07
€y 1.51E-06 1.86E-06
dus/dp 0.01908492 0.0190855 -2.950E-05 0.019086 -3.238E-05
dus/dp 0.00240162 0.0024016 -7.745E-06 0.002402 -2.498E-06
dug/dp 0.15964687 0.1596474 -3.382E-06 0.159647 -3.633E-06
dug/dp 0.08386033 0.0838607 -4.031E-06 0.083861 -4.042E-06
&y 3.09E-05 3.29E-05

Table 5.24 Central Difference Approximations to the Par: meter Sensitivities for problem 4
parameter 4

Kuhn Tucker Forward Difference Ajproximations

Method AP =2% relative error AP=0.1% relative error
df/dp  0.010389619 0.01038962  0.00E+00 0.01038962 0.00E+00
dxy/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxo/dp -0.03975934 -0.0397539 1.374E-04 -0.039759 1.856E-05
dxs/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxe/dp 0.07614087 0.0761542 -1.744E-04 0.076143 -2.359E-05
dxs/dp 0.15499104 0.1549782 8.265E-05 0.154989 1.123E-05
€x 2.37E-04 3.20E-05
dus/dp 0.01908492 0.0193233 -1.249E-02 0.019097 -6.561E-04
dus/dp 0.00240162 0.0024360 -1.432E-02 0.002403 -7.328E-04
dug/dp 0.15964687 0.1599642 -1.988E-03 0.159663 -1.032E-04
dug/dp 0.08386033 0.0841484 -3.435E-03 0.083875 -1.755E-04
€y 1.94E-02 1.00E-03

Table 5.25 Forward Difference Approximations to the Pa-ameter Sensitivities for problem 4 parameter 4
3.3.5 A Graphical Comparison of the Accuracy Delivered by Several Different
Methods

This section presents a graphical method that can be used to assess the accuracy of
the parameter sensitivity derivatives calculated by variou:. methods. When we plot a bar
chart of the calculated sensitivity derivatives versus the tr.e sensitivity derivatives, we can
identify which components of the gradient are least accurate. A brief discussion of the
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significance of each graph will be provided.

Figure 5.1 and 5.2 present a graphical comparison of the dx/dp; and du/op) (as
calculated by various methods?) for problem 3. n addition to results discussed in section
5.3.3, we calculated sensitivities by the modified Kuhn-Tucker method. The Hessian
approximations are provided in section 5.2.

We can see in figure 5.1 that for large values of Ap for forward differencing we did
not obtain results as accurate as those delivered by the other variants of the RQP sensitivity
algorithm. If we examine the bars for the KT w/ BFS Hess we see that there is some
discrepancy in the calculated values of the sensitivity derivative;. We also can see that
using the Hessian approximation delivered by using the SR1 update we were able to obtain
results better than those obtained by using the BFS approximat on.
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Figure 5.1 A comparison of the accuracy of 9x/dp for Problem 3 parameter 1

We can see in figure 5.2 that all but the KT w/ BFS Hzss method produces good
estimates of the sensitivity derivatives. The discrepancy in ou/Op is due to the Hessian

2KT - Kuhn Tucker sensitivity equations with exact derivatives
RQP cd AP=2% - RQP algorithm using 2 iterations to solve perturbed problem with central difference
approximations Ap=2% of the nominal value
RQP cd AP=0.1% - RQP algorithm using 2 iterations to solve perturbe:| problem with central difference
approximations Ap=0.1% of the nominal value
RQP fd AP=2% - RQP algorithm using 2 iterations to solve perturbed j-roblem with forward difference
approximations Ap=2% of the nominal value
RQP fd AP=0.1% - RQP algorithm using 2 iterations to solve perturbe:| problem with forward difference
approximations Ap=0.1% of the nominal value
KT w/ BFS Hess - The Kuhn Tucker sensitivity equations were solvec using the approximate Hessian
delivered by RQOPT when using the BFS update
KT w/ SR1 Hess - The Kuhn Tucker sensitivity equations were solved using the approximate Hessian
delivered by RQOPT when using the SR1 update
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approximation not converging.

KT

RQP cd AP=2%
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Figure 5.2 A comparison of the accuracy of du/dp for problem 3 parameter 1

Figures 5.3 and 5.4 present comparisons of the ac curacy of the sensitivity
derivatives (calculated by various methods2). We can se¢ that all methods are in good
agreement with the exception of the calculation of the KT with the approximate Hessian.
Again the Hessian approximation did not converge fully I'or this problem.
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Figure 5.3 A comparison of dx/dp for Problem 4 as calculated by various methods
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Figure 5.4 A comparison of various methods for calculation of dw/ap for Problem 4

5.4. CONCLUSIONS FROM TEST RESULTS

In summary, we feel that this initial testing has shown ‘hat the RQP based method
can produce reliable estimates of parameter sensitivities. Further testing is required to
determine its performance on engineering problems, and to fu-ther resolve questions about
algorithm parameters and variations. The following conclusicns can also be drawn from
this initial testing.

We saw in section 5.2 that the Hessian approximatior improved if we allowed the
approximation to be updated during the sensitivity analysis. During testing of the other
problems in the test set we observed the Hessian approximation improving as we calculated
the parameter sensitivities. This implies that if the Hessian ap proximation did not converge
during the solution of the original problem (or converged in projected sense) then a good
estimate of the Hessian approximation can be built during th: sensitivity analysis. Once we
have a good approximation of the Hessian approximation th.on we can switch from a more
expensive central differencing approximation to a less exper:sive forward difference
approximation to the sensitivity derivative approximation. ““his conclusion is also
encouraging because the RQP sensitivity algorithm approacnes the Kuhn-Tucker sensitivity

algorithm as the approximation improve (as was demonstrated in section 3.2).

If the Hessian approximation found by the RQP me thod is a good approximation of
the Hessian of the Lagrangian then the Kuhn-Tucker sensil ivity equations can be used with
the approximate Hessian. However, tests need to be developed to check if the Hessian
approximation has converged. If the Hessian approximation did not converge then
updating it while using the RQP sensitivity algorithm can cause the Hessian approximation
to converge. When this happens the Kuhn-Tucker sensitivity equations may be used with

the Hessian approximation. Again, the issue to be resolved before this option can be
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investigated is how to test a Hessian approximation for convergence.

Our experiments with the SR1 update were very enccuraging. Section 5.2
demonstrated how the SR1 update was able to deliver a more accurate estimate of the
Hessian approximation than the BFS update. We also obsered exact convergence of the
Hessian approximation with the SR1 update if we allowed th: Hessian approximation to be
updated during the sensitivity analysis. Near convergence of the Hessian approximation
for problem 1 and 3 was also obtained when the SR1 update was used.

Even though our experiments with the SR1 update were encouraging the SR1
update has some serious drawbacks that will have to be invetigated further before the
method can be recommended. Unlike the BFS update the SIR1 update is not self-correcting
(Ip 1987). As we saw in problem 4, the SR1 update deliverd an Hessian approximation
that was singular, and the RQP method performs best if the essian approximation is
positive definite.

In section 5.3, we observed that the method was able: to approximate sensitivity
derivatives. We saw that using central differencing yielded more accurate estimates of the
sensitivity derivatives than using forward differencing approximations. We did not
observe any major sensitivity to Ap when we were using the: central differencing option.

We also observed that the forward differencing apps oximation has more trouble
evaluating sensitivity derivatives, and the perturbation step size Ap had more effect when

the functions being approximated are nonlinear in the parameter.

Finally, we observed that when the sensitivity derivative is small, the RQP
sensitivity algorithm can sometimes have a difficult time finding the exact value. This was
demonstrated in the calculation of dup/dp for problem 1 anc also in the calculation of the
sensitivity derivatives for p2 in problem 3.
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6. Changes in the Active Set

This chapter describes our findings regarding chan 3es in the active set of
constraints. The first section describes the four cases of chianges in the active set of
constraints. The second section provides sample plots illustrating the predicted behavior
from section 1. Next, the third section discusses several proposed solutions for dealing
with changes in the active set. The final section provides some procedures that can be used
to generate problems where there are changes in the active set.

6.1. CASES OF ACTIVE SET NGE

When the active set of constraints change some of 'he sensitivity derivatives may be
discontinuous. It is also possible that at the point where the active set changes, the
gradients of the constraints may become linearly dependert. When this happens the
optimization problem may become very difficult to solve. The four cases for changes in the
active set are;

1. A constraint enters the active set (constraint gra:ients are linearly independent).

2. A constraint leaves the active set.

3. A constraint enters the active set (constraint gradients are linearly dependent).
4. A constraint enters the active set and causes thee to be no feasible solution

Case 1 and Case 2 are complementaryl. This can hest be demonstrated by an
example. Consider an optimization problem whose solution changes as a parameter p, is
varied and the active set changes as p increases. Assume the original problem is optimized
for a p=p0 and and a sensitivity analysis is performed. Th: value of p is then increased to
p=p! (where p1 > p0) and the problem is reoptimized. At p=pl, constraint g3 will enter the
active set if p is increased any further, but the gradients of :he constraints remain linearly
independent as p is increased. Now p is increased to p=p-* (where p2 > pl > p0) and at this
point constraint g3 has been added to the active set. A Casz 1 active set change has
occurred. To see the complementarity, assume we begin with p=p2 and conduct a
sensitivity analysis for decreasing values of p. Now whei: p = pl, for any value of p less
than pl constraint g3 will leave the active set. Thus, when p reaches p0, constraint gz will
have left the active set and we have had a Case 2 change ir the active set for p going from
p2 to pO0.

The behavior of the sensitivity derivatives for Cases 1 and 2 is characterized as

1 This means that active set change algorithm that are developed for :ase 1 changes in the active set may
also be used for case 2 changes in the active set
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follows. There is a discontinuity in the rate of change of the objective function with respect
to p (d2£*/dp2 is discontinuous), there can be a discontinuty in the rate of change of the
some of the design variables (dx*/dp is discontinuous), ar:d the rate of change of the
Lagrange multipliers can be discontinuous (i.e. du*/dp for a constraint leaving the active
set will go from some nonzero value to zero, this may cause a change in the rate of change
of the other Lagrange multipliers as well). The Hessian o the Lagrangian is continuous
with respect to variations in p. For these problems there vill be directional derivatives of
dx*/dp and du*/dp that can be used to make estimates of liow the design variables and
Lagrange multipliers will change. Second order extrapolations of the behavior of the
objective function can also be made using d2f*/dp2 in a di-ectional sense.

The characteristic of Case 3 is a discontinuity in th:: Lagrange multiplier estimate
(u* is discontinuous). The discontinuity in the Lagrange raultiplier causes a discontinuity
in df*/dp and also causes the Hessian of the Lagrangian to be discontinuous. Since the
active set changes, there will also be a discontinuity in (dx*/dp). At the point where the
constraints become linearly dependent it will not be possit.le to solve the Kuhn-Tucker
sensitivity equations because they will become singular. ‘“or Case 3, there may be an
exchange of constraints in the active set (i.e. the new cons raint may replace one of the
constraints that is already in the active set as p moves through the point).

The main characteristic of Case 4 is that there only exists a directional derivative
away from the point where the path terminates. In order to calculate the directional
derivative for Case 4 we need to be able to find the proper active set to follow when we
leave the degenerate point. Case 4 changes in the active st will be common when the user
overconstrains the design, i.e. sets the performance specif:cations to high to be physically
meet by the given design configuration.

6.2. DEMONSTRATION OF CASES

This section describes the behavior that we observ:d in the initial test set for
problems that had changes in the active set. This section ilso discusses two test problems
that are not in the initial test set that are used to demonstra e the behavior of Case 3 changes
in the active set.

The problems in the initial test set only had Case 1 and Case 2 changes in the active
set. Indications of where the active set changes were shown on the plots of the optimum
sensitivity provided in the appendix.

If we examine the plots that are presented in the a pendix (figures A.1-A.8, A.10,
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and A.11) we can see the discontinuity in 9x*/dp and du*/3p when the active set changes.
In problems 3 and 4, because there is only a small discon:inuity in dx/dp, it is difficult to
see in the graphs provided (figures A.5,6,7,10,11) in the appendix. However for
problems 3 and 4 it is easy to see the discontinuity in du/clp, the slope of the Lagrange
multipliers, when the active set of constraints changes.

If we examine figures A.4 and A.11, we see that rot all of the components of
dx*/dp are discontinuous when the active set changes. For problem 2 in figure A.4 we do
not see a discontinuity in dx2*/dp, and for problem 4 in figure A.10 we do not see a
discontinuity in axl*/ap or dx3*/dp, when the active set changes. This behavior is partially
due to the fact that we were studying right hand side perturbations for these problems. The
symmetry in problem 2 can be used to explain its behavicr. In problem 4, the gradient of
constraint gg had zero's in the first and third locations, thus we expect that perturbations of
constraint gg should have no effect on dx1*/dp or dx3*/0)..

The discontinuity in d2f*/dp2 is difficult to see, when the active set changes for
most of the problems in the initial test set. However for test problem 2, parameter 1,
(figure A.3) we can see the discontinuity in d2f*/dp2. In tae plot of the optimum value of
the objective function versus pj we can see that for value; of p) < 1.055, d2f*/dp2 is less
than zero (a region of negative curvature) and for values of p; 2 1.055, d2f*/dp? is greater
than zero (a region of positive curvature).

In problem 2 (p3), problem 3 (p1,p2,p3) and probl:m 4 (ps) we studied the effect of
perturbing the right hand sides of the inequality constraints. In these problems we studied
a range of perturbations from where the constraint was inactive to where the constraint is in
the active set. When the constraint was inactive perturbations in the parameters had no
effect on the optimum. When the constraints entered the active set for these problems they
caused d2f*/dp? to go from zero to some nonzero number The discontinuity of d2f*/dp2
can be seen in figures A.4, A.5, A.6, A.7, and A.11.

The following example will demonstrate how the optimum behaves for Case 3,
when the gradients of the constraints become linearly dependent upon a change in the active

set of constraints.
minimize: f=x12+(P-1)2 (6.1)
subjectto: g1 =3x1+2P-1020 (6.2)

g2=2x1+3P-1020 (6.3)
when P =2, the minimum £* = 5 occurs at x1* = 2 with bcth constraints active and the
gradients of the constraints linearly dependent. The Lagrange multipliers and in the family
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upu2 € {3up+2u=4,u1>0, up > 0} (6.4)
For this problem df*/dp, x*/dp and du/dp do not exist. Tl ese derivatives do exist in
both the positive and negative directions and are indicated b ox/ap* for increasing values
of p and 9x/dp- for decreasing values of p.

Figure 6.1 presents the sensitivity information for p-oblem 6.1-6.3. Figure 6.1 (a)
and (b) represents the first order predictions of the new valu:s of the Lagrange multipliers
for this problem. For this problem the linear predictions agree with the optimum Lagrange
multipliers. There is a discontinuity at Ap = 0.0, therefore there are only be directional
derivatives for these values. Figure 6.1 (c) represents linear predictions of the new value
of the objective function. Notice again that there is a discortinuity in the slope of the
prediction. Thus df*/dp does not exist for this value of p (towever df*/dp* and df*/dp-
will exist in a directional sense where the superscript + or - ndicate the direction of change
in p). Figure 6.1 (d) represents the predicted location of the: optimum. Notice the
discontinuity in the slope at Ap = 0.0, the true location of the optimum agrees with the

linear prediction for this problem.
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Figure 6.1 Plot of the optimum sensitivity prediciions for problem 6.27-29

We have also examined a test problem used by Fiicco and Ghaemi (1982). This
test problem has a linear dependence in the constraints gradients. The problem is to design
a corrugated bulkhead for an oil tanker. The objective fur ction is to minimize the weight of
the bulkhead with constraints placed on allowable bending stress, moment of inertia,
corrosion, and minimum gage thickness of the material. The problem has six design
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variables, 18 design parameters, 17 constraints, a nonlinear objex tive function, and near
linear constraints. We did not apply any scaling to this problem, even though the
constraints for this problem are poorly scaled.

A sensitivity analysis was performed for variations in the parametet, LT, from
0.01% to 1% using the RQP code RQOPT (Beltracchi and Gabriele 1987). One step
convergence of the objective function value, predicted objective function value, design
variables, and the Lagrange multipliers were also used. This sesitivity analysis was
performed before the RQSEN system was built, and all of the c: culations were performed
by hand. Therefore we did not record all of the values of the de¢ sign variables, Lagrange
multipliers, and constraints.

Figure 6.2(a) isa plot of the sensitivity of the optimal cbjective function for the
bulkhead problem versus the parameter LT which was the length to the top brace. AtLT =
482.8 we notice a discontinuity in the slope of the objective function. At this point we have
encountered a Case 3 change in the active set. AtLT = 476.2% there is a Case 2 change in

the active set.

Figure 6.4 presents a plot of the value of constraint 12 (g13) versus the value of LT.

At LT= 482.8, the value of this constraint goes to Z€ro and the constraint enters the active

set.

Figure 6.3 presents a plot of the value of the Lagrangt. multiplier for constraint 12
versus LT. Notice that there is a discontinuity at LT = 482.8 this is due to a linear
dependence of the constraint gradients of the active set. As1.T moves from one side of
4828 to the other, there will be a change in the active set of constraints with £13 replacing a

constraint on the lower bound of x.

Figure 6.2(d) presents a plot of the optimal value of design variable six. ForLT2
482.8, the lower bound constraint is active. However, when LT < 482.8 the optimal value
of this design variable is no longer on the bound. Figure 6.2 also presents plots of the
behavior of x] and x3, we can also see discontinuities in the se variables when the active set
changes.
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For this problem there is a second change in the active set at LT = 476.25 when g7

leaves the active set. As LT moves through 476.25 there s not the same type of
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discontinuity as we saw for Case 3. This represents Cas:: 1, a constraint leaving the active
set. We can see some of the characteristics of this case i1 the plots. In figure 6.2, the
slope of the objective function is continuous at LT = 47¢.25. In figure 6.3, the value of the
Lagrange multiplier of constraint g, goes to zero signifying the constraint has left the
active set. Finally, in figure 6.2 we can see that 9x,/dp, Ix3/dp, and dx¢/dp are
discontinuous at LT = 476.25.

A Case 4 change in the active set can be illustrated by the following simple one
variable problem.
minimize f(x) = x

Subjectto: g1 =x-p1 20
g2=x-220

When p1 = 1 the optimum solution to this problem is f*::1.0, x*=1.0, and constraint g is
active. When pj is increased to p1=2.0 constraint g; enters the active set. However, if pj
is increased beyond 2.0 there is no feasible solution for this problem.

An engineering example of a case 4 change in the active set can be illustrated by the
following example. Find the optimum air plane to fly a g iven mission, where the design
variables may be the size of the wings, engine size, cruis: altitude, etc. The design
parameters might be; total cargo weight, runway length, : ir temperature at take-off, etc.
Assume a constraint on take-off distance is applied,

Take-off distance < Available Runway Le 1gth
and a parameter sensitivity study of total cargo weight is performed. As the total cargo
weight is increased, the take-off distance of the airplane icreases, and the design variables
of the airplane may also change. If the total cargo weight is increased beyond a certain limit
it may become impossible for the aircraft to take-off at th:: given runway length. A
parameter sensitivity analysis for values of the total cargc weight for values greater than
this limit are meaningless because there will be no solutio1 to the problem since the plane
cannot take-off. Thus, for this problem when the runway length constraint enters the active
set there will be a case 4 change in the active set causing :10 feasible solution to exist.

6.3. PROPOSED SOLUTIONS

This section will discuss some algorithms that can be used to obtain more accurate
estimates of the parameter sensitivity after the active set of constraints has changed. The
first subsection describes algorithms that can be used to culculate sensitivity derivatives
when there are Case 1 or Case 2 change in the active set. The second subsection presents
an example demonstrating how the algorithms presented n the previous section work. The
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final subsection discusses how sensitivity derivatives can be calc ulated for Case 3 changes

in the active set.

As we have mentioned previously, the sensitivity derivaiives do not exist at points
where the active set changes due to the discontinuities present ir the optimum path.
However, the sensitivity derivatives will existina directional sense. The proposed
algorithms for dealing with changes in the active set are based on calculating directional
derivatives.

Directional derivatives can be approximated as follows

(6.5)

df*(Ap*) Limit (£*(p0 + AP) - *(p%)°
dp “Ap-0t Ap :

Here df*(Ap*)/dp indicates the rate of change of a function wi.en a parameter is perturbed
in the positive direction. When the base point for a sensitivity analysis is degenerate, we
can approximate directional derivatives using the RQP sensitivity algorithm in the same

way as we approximate other derivatives.

6.3.1 Dealing with Case 1 and 2

We begin this section by presenting the following ex:umple problem

minimize: f = X1+ 12+ (x2-2)2 (6.6)
subject to: g1 =X1-P 20 (6.7)
g2=6—2x1-x220 (6.8)

When p = p0 = 1 as shown in figure 6.5, f* =4, x* =(1,2) A sensitivity analysis
indicates that as p is increased, o0x*/dp = (1,0). Notice, tha: as we increase p, eventually
constraint gp will become active which is a Case 1 change ia the active set. Increasing p
from (x*,p1) will result in the optimum point moving along the intersection of the two
constraints. The deflection algorithm is based on finding a constraint intersection and then

calculating new values of 9x*/ap and du*/dp along the new active set.
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Figure 6.5 Deflection of the Sensitivity Search Direction

The proposed algorithm for dealing with constraints sntering or leaving the active
set is given by the following steps:

1. Determine 9x*/dp at the base point

2. Calculate Apl for intersection of the constraint by finding the minimum Ap that
causes a constraint to enter/leave the active set

| _ min g : .
Ap j (m} j ¢ Active set (6.9)
% o 9
apt="00 {_a‘llll_} j e Active set (6.10)

&

3. Calculate 9x*1/0p with the active set updated to reflect the change indicated by
step 2.

4. Calculate Ax and Au by

* *1
Ax=a—(;%—Apl+ a—SP—Ap2 (6.11)
Ju* Ju*1
Au = Ap! Ap2 6.12
u=35-Apt+ 5P (6.12)
where
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Apl =min (p - p0, 0) (6.13)
Ap2 =max (p - p1, 0) (6.14)

5. Calculate the new value of the objective functicn by

frew = f(x*,p0) + Ap g;f-+ %Ax (6.15)

The first step in the above algorithm is to perform a sensitivity analysis to determine
which direction the optimum will move in. In the second step, we attempt to identify the
value of p for which the active set will change using equations 6.9 and 6.10. A new search
direction is calculated in step three which includes the changed active set. In step four, a
formula is provided which defines the proper value for A« for before the constraint is
encountered and after the constraint becomes active (inactive). This result is used in step 5
to predict a new value for the optimum at the new point.

In step three of the deflection algorithm, it is necessary to find the deflected search
direction at the point where the new constraint enters the :ctive set. This can be done by
adding the newly violated constraint (or removing the constraint that is leaving the active
set) to the Kuhn-Tucker sensitivity equations and then so'ving for ox1/dp and du!/dp.
This computation can be performed efficiently by using matrix updating techniques as
described in (Diewart 1984). In order to obtain a more accurate estimate of the
sensitivities, the gradients of the active constraints can be re-evaluated at x = x1, where x!
is the predicted intersection of the new constraint.

When using the deflection algorithm, a check should be made to assure that the
constraint gradients are not linearly dependent. If the con:traint gradients are linearly
dependent then this procedure cannot be used to solve for -he optimum sensitivities because
there is no solution to the Kuhn-Tucker sensitivity equaticns. The procedure to be used
when the constraint gradients are linearly dependent will be discussed in section 6.3.3.

The estimate obtained in step 5 is a linear extrapolztion. A better estimate of the
new value of the optimum can be made using a quadratic ¢ xtrapolation. The formula for a
quadratic extrapolation is (McKeown 1980, Fiacco 1983, Barthelemy and Sobieski 1983)

daf* 1 d2f*
f*new = f(x*) + Ap; o t 5 Ap d_pi—zApi (6.16)

where

d2f*  g2L [ d2L ]Tax* duT dg  9vT dn
dp2 _ opi2  L9pox*| Ipi " op; 55? T o I (6.17)
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Using (6.16) to predict the new value of the objective function as p varies yields a
more accurate estimate of the new optimal objective function until the active set changes.
We should note that equation 6.17 is in terms of dg/dp and dn/op, and can be rewritten in
the following form in terms of dx*/dp

@2 P [ L ]T ax* |, T L ox* 6.18)
dpZ  opi2 | ~Lopox*] Opi T Opi ox*2 9pi ‘

If we substitute equation 6.18 into equation 6. 16 ané write the equation in terms of
Ap and Ax we will obtain

1 d2L a2LT a2L
f*new=f1storder+-i|:Apié;i-2-Api + 2Apim;Ax + AxT WAX] (6.19)

where the first order approximation comes from equation 6.15. This form has the
advantage of being able to predict the new value of the obje« tive function at a new value of
x and p. When the deflecuon algorithm is used to calculate :he new location of the
optimum then equation 6.19 can be used to make a second ¢ rder estimate of the new value
of the objective function.

As mentioned in section 6.1, a constraint leaving the active set (Case 2) is
complementary to a constraint entering the active set (Case 1). It may be possible to predict
df*/dp when a constraint leaves the active set without calcuating 9x1*/dp and dul/dp along
the new active set. This could be beneficial for instances that only require estimates of
P*(p). To predict the behavior of the optimum when a constraint leaves the active set we

can use directional derivatives. Using the following formuia (Fiacco 1983)

and the fact when an inequality constraint leaves the active set its Lagrange multiplier goes
to zero, we can obtain an estimate of df*/dp at the point where the change in the active set
takes place. this is done by obtaining an estimate of du/op from a sensitivity analysis at the
base point using it be used to estimate when a constraint w1l leave the active set. A

prediction of the df*/dp when the active set changes can th=n be made from the following

formula
df* of ™ ioh; "4 ;og;
— + . - . 6.21
dp ~ op E] Yidp i>=:1 . 3% (©2D
where
Loy + iap! (6.22)
Vi =Vi Tp- P .
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a .
| = ik + 3 ap! (6.23)

When these values of ul and v1 are used we obtain a new estimate for the value of the
df*/dp that will be valid when the value of p is increased or decreased past pl.

The deflection algorithm can be used to predict when a second change in the active
set will take place. A prediction of when a second constraint may be added to or removed
from the active set can be made by making a linear approximition using the following

formulas
d og; d
1_ . gi j ox 1. .
g =g+ El?i“- X 90 Ap; je Active set (6.24)
Loy [a"'}AI' Acti 6.25
uj—uj+ 33} p; Jj€ Activeset (6.25)
and
1
Ap? = min 5 je Active set (6.26)
! og; 98 ax*!
" X% op
1
2 %
Ap; =min j € Active set (6.27)

[
Pi
where Api2 predicts the value of p; that will cause the secord constraint to enter (using eq.

6.26) or leave (using eq. 6.27) the active set, gj1 is a prediction of the value of the jth

constraint, and ujl is the predicted value of the Lagrange multiplier when the active set
changes. The predicted value for Ap2 is calculated as a linear approximation of the value
of the constraint in the 9x1/ap direction. If the constraints are interrelated (i.e. are
evaluated as a set) then it may be possible to use a more acsurate estimate of dg/dx in
formula 6.26, by predicting its new value by using the fornula

P 2
28 1) = 28 (o) + goe- op] (6.28)

When the constraints are interrelated 02g/ox*dp can be ev iluated when dVL/dp is

evaluated.
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If the calculation of the gradient of a particular coiistraint is not expensive then the
value of the new gradient may be used in formula 6.26.

The deflection algorithm and the variants that wer: introduced in this section will be
effected by any nonlinearity that is present in the problem particularly nonlinearity in the
constraints. It should be emphasized that these sensitiviti:s are only estimates of how the
sensitivity will change.

6.3.2 _An Example

This section presents an example problem to demcnstrate how the deflection
algorithm of section 6.2.1 performs. Example problem (5.6-8) will be used. Figure 6.5
shows the solution for p = 1.0, this example assumes tha: p is increased to p=2.5. The
exact value of the new optimum at p = 2.5 is f* = 13.25, X* = (2.5,1).

For p = p0 = 1.0, the initial search direction for ar: increasing p is 9x*/dp = (-1,0)
as shown in figure 6.5. Step 2 of our algorithm determincs that constraint g2 enters the
active set when p=p1=2.0. For values of p greater than p’ the location of the optimum is
along the intersection of constraints gq and g3. The new szarch direction along constraints
g1 and g3 is determined from step three to be,

1
%’5?; =(-1,2) (6.29)

For p = p2=2.5, which is greater than pl, the estimated Ax is composed of the

sum of two vectors: one vector from (x*,p0) to (x*,p1) plus the vector from (x*,pl) to
(x*,p2). Thus by equation 6.11 for a Ap=1.5

Ax = (1.5,-1) (6.30)

Thus the estimate of the new location of the optimum for »=2.5 becomes

X*pewest = (2.5,1) (6.31)
Which is the true location of the new optimum for this prcblem. Without using the
deflection algorithm we obtain the following estimate (by :quation 2.9) of the optimum

X*newest = (2.5,2) (6.32)

By equation 2.7 and 2.8, the new value of the obje:tive function will be

fkTist =10 (6.33)

Using equation 6.10, which takes into account the change in the active set, we get
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fkTDI1st = 10 (6.34)
Equation 6.16, which gives a second order estimate withut taking into account the change
in the active set, we obtain

fkTond = 12.25 (6.35)
Equation 6.19, which provides a second order estimate tuat does take into account the
change in the active set, we obtain

fxkTDond = 13.25 (6.36)

Using the deflection algorithm the predicted location of the optimum was in exact
agreement with the true value. The linear predictions of e\ gave the same value because
there was no component of the gradient of f in the x dir:ction. Using equation 6.16 for
the second order estimate provided a better estimate of th: new value of the objective
function, but when equation 6.19 was used the exact valie of the objective function was
obtained. We should probably not expect results this gocd in more general optimization
applications. However, we can expect better predictions of the location of the new
optimum and the value of the objective function for small changes in the parameter when
the active set changes.

6.3.3 Dealing with Case 3

Case 3 is the most difficult case to deal with for changes in the active set because
when the active set changes, the Lagrange multipliers will be discontinuous and predicting
the new active set as the parameter moves through the de senerate point is very difficult.

To deal with Case 3, we propose avoiding the singular point by reoptimizing the
problem for values of p that are on either side of the singular point. Performing a
sensitivity analysis at both points, use these sensitivities in a directional sense for p moving
away from the singular point.

Reoptimizing the problem on either side of the singular point may be a difficult
problem if the point is nearly singular. This may cause tte algorithm being used in the
reoptimization to fail or converge very slowly (Powell 185, Bartholomew-Biggs 1986).

When using an algorithm such as RQOPT that up:ates an approximation of the
Hessian of the Lagrangian, it may be unclear which values of the Lagrange multipliers to
use if the Lagrange multipliers are not unique at the solut.on.
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6.4. GENERATION OF TEST PROBLEMS

This section will describe a procedure that can be usec to generate test problems that
possess changes in the active set. The first section describes the generation of test
problems with Case 1 and Case 2 changes in the active set. The second section describes
the generation of test problems with Case 3 changes in the ac'ive set.

6.4.1 Test Problems for Case 1 and Case 2 Change: in the Active Set

Several test problems that exist in the literature possess Case 1 and 2 changes in the
active set (See Schmit and Chang 1984, Vanderplaats and Yt yshida 1985, Vanderplaats and
Cai 1987). To generate new problems, active set changes for these two cases can be
introduced into a test problem by adding constraints that are 1ot active at the optimum but
are violated for small changes in the parameters. The follow ing is an outline of the steps
that can be used to generate test problems where there are changes in the active set

Step 1 Generate a NLP Test Problem. One such method would be to use the
Rosen and Suzuki (1965) procedure.

Step 2 Vary some problem parameters and find the sath of the optimal solution
with respect to p, say x*(p) from p0 to p2.

Step 3 Choose a value of p! between p¥ and p? as the point where a constraint will

enter the active set.

Step 4. Construct a new constraint such that
gnew(x*(p1.p1) =0
gnew(x*(p! - Ap),p! - Ap) >0
and the gradient of gnew(x*(p1),pl) is linea:ly independent of the gradients
of the constraints that are already in the active set. ‘

Step 5. Calculate the path of the new problem fromn: p! to p2

The above algorithm can be used to create test problems for Case 1 when a
sensitivity analysis is conducted at p = p¥ and then p in perturbed to p2. The same test
problem can be used as a Case 2 test problem, when the sensitivity analysis 18 performed at
p = p2 and p is moved to pO.

This procedure is illustrated in figure 6.6 which shows a graph of a two variable
test problem along with the optimum x*(p0). At the optitaum, constraint g1 is active. As
the p increases from p0 to pl the location of the optimum moves from x*(p0) to x*(p2),
and constraint g remains active. To introduce a change i1 the active set we can place an
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additional constraint g7 (shown in figure 6.6 (b)), that in:ersects the vector {dx(p0)/dp}Ap,
where Ap = p2 - p0. The value of p where the path to the optimum intersects the new
constraint will be denoted as pl. By adding constraint g7, the optimum location x*(p2)
shown in figure 6.6 (b) will be different than without the constraint.

x*(p?) " 2
X, I x*(pl) x2 X |(p2) gl(p )
~
0 20" R
1 ox
x*(p") Jp x*(p”)
X X

Figure 6.6 The creation of Test Problems with chiinges in the Active Set

6.4.2 eneration of Test Problems for Cas

This section will describe the generation of test problems that have a Case 3 change
in the active set. We first discuss problems that are in the literature. Then we will discuss
two different algorithms that can be used to generate test sroblems of this type.

A survey of the literature revealed several test pronlems where the constraint
gradients are linearly dependent when the active set chanyes (Case 3). Three such
problems were found in articles by Bartholomew-Biggs (1986), Vanderplaats and Yoshida
(1985), and Fiacco and Ghaemi (1982). It is suspected that problems discussed by
Robertson and Gabriele (1987) and Barthelemy and Sobieski (1983) also possess Case 3
changes in the active set. Powell (1985) has studied the performance of RQP methods
when the gradients of the constraints are linearly dependent. The test problems that were
used by Powell can also be modified to be sensitivity test problems.

We can expect to find other test problems (Case 2) when we begin to study more
engineering test problems. Many engineering optimizaticn problems are fully constrained
at the optimum. When a new constraint becomes active for a fully constrained problem we
will either have a Case 3 change in the active set or loose the feasible region(Case 4).

To generate test problems for Case 3 changes in tl:e active set the algorithm
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described in section 6.4.1 can be used with the following mudification. In step 4 when the
new constraint is added to the active set it will have to be lincarly dependent with the
constraints in the active set. To accomplish this the gradient of the new constraint at x(pl)
can be constructed as a linear combination of the gradients o the other active constraints. It
may be possible with further work to control which constraint in the active set is replaced
when the active set changes.

An alternative, less general procedure that can be used to create test problems with
linearly dependent constraint gradients is illustrated for a two variable problem in figure
6.7. Figure 6.7 (a) shows a simple two variable optimizaticn problem. The problem has
an elliptic objective function and is subject to an equality cor:straint that changes as the
parameter p changes. There are also variable bounds preser.t. Forp = pO the optimum is
located at the intersection of the equality constraint and the v ariable bound x2max- When p
is changed to p = pint the optimum is then located at the intersection of the equality
constraint and both X2max and X1min. At this point the gradents of the constraints are
linearly dependent which causes the linear independence as:umption of the Kuhn-Tucker
conditions not to hold. When p changes further to p = p1 a: shown in figure 6.7 (b) the
optimum is now located at the intersection of the equality constraint and Ximin. Thus as p
moves from p0 to pl there will be a change in the active set with the constraint gradients
being linearly dependent. This procedure can be generalize. to more dimensions. The
discontinuity in df*/dp can be modified by varying the eccentricity of the ellipses.

Figure 6.7 The Creation of Test Problems with |inear Dependencies
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7. Conclusions and Recommendation:. for Future Research

1.1 N ION

In this work we have proposed a new method for estimating parameter sensitivity
based on the Recursive Quadratic Programming method. The new method approximates
the sensitivities using a differencing formula and can be shown to be equivalent to a
modified Kuhn-Tucker method. The method appears to be very competitive with existing
methods when measured in terms of the number of function evaluations required to
calculate a parameter sensitivity. It does not require the calculation of second order
derivatives, but uses the BFS method or SR1 method for developing an approximation to
the Hessian of the Lagrangian.

The choice of the variable metric update (BFS or SR1) effects the amount of work
required to solve the perturbed problem, because differert updates provide Hessian
approximations of differing accuracies. Different variabl: metric updates also effect the
speed with which the RQP algorithm can solve the problem.

Initial testing of the algorithm against problems with known sensivities has shown
that the method can adequately estimate the derivatives. he central difference
approximation seems to provide the best results, particulirly when the Hessian
approximation is updated during the RQP iterations at the¢ perturbed point.

Using the RQP method to solve the optimization problem may be beneficial in many
applications. This is because the RQP method has been :hown to be one of the best
general purpose algorithms for solving nonlinear prograriming problems. The use of
variable metric updates allow the RQP method to solve problems where the Sequential
Linear Programming (SLP) method fails. The RQP method can solve problems with very
nonlinear constraints, and the RQP method performs the »>est when there are many active
constraints at the optimum of the problem.

Chapter 6 has discussed potential problems occur-ing when there are changes in the
set. Chapter 6 also presented some techniques that can b: used to deal with these cases.
We observed discontinuities of the sensitivity derivatives in Chapters 5 and 6 when there
were changes in the active set of constraints. If we are uting sensitivity derivatives to make
extrapolations, we now know Case 3 will cause the largest discontinuities (i.e. step
discontinuities in the Lagrange multipliers) in the derivatives, and Case 4 will cause no
solution to the proposed constraints to exist. We have al:o shown that the discontinuities
in dx*/dp and du*/dp, that occur when the active set changes, make our prediction of

which constraint will enter the active set second very difficult without reoptimizing the
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problem.

71.2.  RECOMMENDATIONS FOR RESEAF.CH

The next step in the testing of the new RQP sensitivity algorithm will be to expand
the test set to include a larger variety of test problems. We will need to include problems
that have more variables, and also problems that demonstr:ite the behavior associated with
Case 3 and Case 4 changes in the active set. We will also 1eed to expand the test set to
include engineering test problems for which the Hessian o' the Lagrangian is not readily
available.

As we observed, the perturbation Ap can effect the accuracy of the derivatives that
we calculated and we will have to investigate methods to i nprove the choice of Ap. In our
initial testing we always let RQOPT use two iterations to solve the perturbed problem.
Further tests are needed investigate the effectiveness of the algorithm when RQOPT is only
allowed one iteration to solve the perturbed problem.

We observed that the Hessian of the Lagrangian iniproved if we allowed the
approximation to be updated during the reoptimization. More experiments need to be
conducted to find how to best update the Hessian approxiraation. We also need to find
when we should switch from using two iterations to solve the perturbed problem to using
one iteration to solve the perturbed problem. Further worl: is also needed to identify when
the Hessian approximation has converged. If the Hessian approximation converges to the

true Hessian of the Lagrangian then the Hessian ;clpproxim ation may be used in the Kuhn-
Tucker sensitivity equations, however dVL/dp will still nzed to be calculated. Since

VL = 0 the calculation of dVxL/dp may be subject to nunerical noise and the RQP
sensitivity algorithm may perform better than the Kuhn-Th.cker method.

The initial testing of the SR1 update was very enccuraging in terms of the
convergence of the Hessian approximation to the True Hessian. However the SR1 update
proved to be unstable when used for test problem 4. We vill need to investigate some
method that can be used to stabilize the SR1 update or fincl a set of rules that can be used
that will only allow the SR1 update to be used when the updated Hessian approximation
will be stable.

Using the RQP method to approximate the Hessiar: of the Lagrangian may be
improved further if a Hybrid MOM/RQP algorithm is use«! to solve the original
optimization problem. A Hybrid MOM/RQP algorithm would use the Method of
Multipliers (or Augemented Lagrangian) algorithm for the first few stages, (build an
approximation of the Hessian of the Lagrangian) then swi:ch to using the RQP method.

When the RQP method is used the approximation of the Flessian of the Lagrangian from
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then MOM method can be used as the initial Hessian apprcximation, this should help the
RQP method quickly solve the problem, and also obtain a ;;00d approximation of the
Hessian of the Lagrangian.

In summation we have seen that the new RQP sens tivity algorithm can find
parameter sensitivities. We still need to investigate if this inethod will be superior to the
Kuhn - Tucker method for general problems. Section 3.2.2 demonstrated that there will be
a trade off with regarding the number of function evaluaticns required by the Kuhn-Tucker
method versus the RQP method. We will have to conduct more experiments to study the
general accuracy that can be expected from the RQP sensit:vity algorithm.

Using first order extrapolations can provide unsati :factory results when the
functions are nonlinear with respect to p. This situation is illustrated in Figure 7.1, which
shows the effect of variations in p3 on x1*. On this plot a 'inear and quadratic extrapolation
are presented as well as the actual values of the optimum ¢f x1*(p3). It can be seen that the
linear extrapolation does not provide a good estimate of th= new value of x1* when p3
changes, however the quadratic approximation provides ai: accurate estimate of x1*(p3) up
until the point where the active set changes.

If good estimates of the second derivatives can be ‘ound then more accurate
estimates of the behavior of the optimum can be made by :sing second order
extrapolations.

There are few available methods to calculate second derivatives of the optimum with
respect to parameter variation but it is possible to predict (12f*/dp;2 for some problems.
However the only published algorithm that was found for calculating d2x*/dp;? requires
third order derivatives, which are seldom available for engineering problems. Thus, an
algorithm based on the central differencing variants of the RQP sensitivity algorithm is
proposed that can be used to calculate second derivatives.

When using the central difference approximation &n estimate of the second
derivatives can be calculated from

d2y(p) _ y*-2y+y-
dpi2 (Apj)2 7.1

Where y can represent f*, x*, u*, or g*, and the estimates of f*--, x*-, u*--, and g*~
calculated in steps 2 and 4 of the RQP sensitivity algorithin are substituted appropriately in
(7.1). When using a central differencing approximation this option can be effective for
indicating when curvature is present, but may not be able ‘0 accurately predict the true value

of the second order information. It should be noted that this procedure may have the most
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difficulty in predicting 92u(p;)/dp;2 because the RQP algor: thm produces more accurate

estimates of f+- and x+- than ut-.

Second derivatives might also be useful for predict.ng when constraints enter the
active set. A prediction of when a constraint enters the act:ve set can be identified using the
following model of the behavior of the constraints that are not in the active set

d 1d%g
= g(x*,p) + ~E-Ap; + Apj)2 7.2
8new = §(x*.p) + AP + 3 dpi2( pi) (7.2)
9.46
[ J
9.44 - i
= 9421
»
g(2) leaves
Xmax(2) leaves i
acﬁve Base P ( 3)=3 1 4 active set
9.40 Linear
— Extrapolation
9.38 +—r—r—r——T—"rTT7— —— —r———— ——
295 300 305 310 215 320 325 330
P(3)

Figure 7.1 A Comparison of Quadratic to Linear Extrapolations for the Sensitivity
Approimations.

As a final note to this report we will discuss using the RQP method and the RQP
sensitivity algorithm in multilevel decomposition algorithias. Because multilevel

decomposition algorithms solve the same subproblems fo- different values of system level

parameters, we expect that as the multilevel decomposition algorithm converges (after the

proper active set has been identified) that the true Hessian of Lagrangian in the subsystem

will not change very drastically. If the RQP method is uszd to solve the subsystem level

optimizations and perform the sensitivity analysis, we expect that the Hessian

approximation will converge to the true Hessian of the La zrangian as the multilevel

decomposition converges. If we use the approximation of the Hessian of the Lagran gian

from the previous subsystem optimization as the initial H:ssian approximation for the next

iteration, a better approximation of the Hessian of the Lagrangian should be obtained when

we solve the new subsystem problem.

The above discussion implies that using the RQP method in conjunction with the
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multilevel decomposition method may mean that on the fir: t few system level iterations the
sensitivities calculated at the subsystem level may be inacc irate, but the accuracy of the
sensitivity derivatives will improve after each iteration at the system level. In our opinion
this behavior is suitable for use with multilevel decomposition since far from the optimum it
is often not advantageous (or necessary) to perform exact l:ne searches or have exact values
of the gradients. However, as the solution is approached, ve need to obtain more accurate
derivatives and perform more exact line searches to obtain acceptable convergence.
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Appendix 1
Test problems

This section will present a discussion of the test p-oblems that were used in the
initial testing. Selected plots of the optimum sensitivity zre provided to show how the
optimum varies when the parameter is perturbed. The plots will also demonstrate how
changes in the active set effect the optimum sensitivity.

On each plot that is presented, the base value of th:e parameter will be indicated by a
vertical line indicating the value at which the sensitivity analysis was performed. Active set
changes will be indicated by a vertical line and a label indicating the constraint that enters or
leaves the active set when the parameter is perturbed from the base point. On the plots of
the optimum objective function vs the parameter, a linear extrapolation will be indicated by
a line showing the predicted value of the objective function using equation 2.8.

The plots of the behavior of the optimum can be used as a tool when diagnosing the
behavior of various algorithms used to predict parameter sensitivities. Nonlinearity in the
paths £*(x*,p), x*(p), and u*(p) can be seen in these plcts, this nonlinearity can be used
to explain why (or how far) linear extrapolations are vali. The discontinuities in the
sensitivities that occur when the active set changes can also be seen and we can use these
discontinuities to establish regions where the extrapolaticns are valid.
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Problem 1:
Minimize  f(x) = (x1 - p1)? + (x2 - p3)?
subject to:  g1(x) = 2x7 - x% -p220

g2(x) = pg - 08)(% -2x220

Variable bounds [8] <x< 3]

Starting Point for Optimization x0 = (0,3) p0=(3,1,3)
Optimum Point: f(x*(p%)) =125  x*(p0) ={2.5,2.0)

Both constraints are active: u*(p0%) = ' 0.3,0.4)

Hessian of the Lagrangian H=[2'84 2(.)6

Sensitivity derivatives

df ox* 0.0 Ju* -0.2 )
H= 1.0 351—-_— 0.0] W: [0.4] varied p; from 1.5 to 4.8

df ox* _r-0.17 ou*_r-0.13M47
;703 So-lo2] T=[ooog] varieap: from-301015

ox* [1.27 du* [ .404¢ .
=04 e [o:s 5= [ 5's806] varied p1 from2.2t03.95

Special features: Hessian matrix is available. Quedratic objective function and
quadratic constraints. Active set changes are introduced for large changes in
the parameters. Problem is fully constrained at the optimum. Plots of the
behavior of the optimum are presented in figures A.1 and A.2.

Constraint g1 leaves the active set when 1 2 4.5, and constraint g2 leaves
the active set when pj <2.0.

Constraint g7 leaves the active set when 13 = 3.888, and constraint g}
leaves the active set when p3 < 2.4322. Since u*(p3) is nonlinear a linear
prediction of when the constraint will leave the active set will not be accurate
for large variations in the parameter.
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Figure A.1 Sensitivity of Problem 1 with respect to P(1)
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Problem 2:

511 5
Minimize  f(x) = O.SXT[l 51 ]x + xT[Spl]

115 5
subject to: g1(x) =Pp1X] + X2+ X3-p22 0

g2(x) =x1 +2x2+3x3-4.7-p120

-10 20
Variable bounds [—IO-J <x < [20]
-10 20

Starting Point for Optimization x0=(1.1,1.2,1.3) p0=(1,3)
Optimum Point: f(x*(p%)) = 25.5 x*(p?) = ( 1.¢,1.0,1.0)

g1 active at the optimum: u*(p%) = (12.0,0.0)
511

Hessian of the Lagrangian H:[l 51 ]
115

Sensitivity derivatives

2.0833333
df ox* Ju*  [-4 66666666
=70 —|2.1666666 - varied py from 0.8 to 1.2
dp1 - 9p1 [-.9166666] 9p1 [ ] p1 from .10

0.333333

df ox* [ ] ou* [2.333333 .

—=120 =| 0.333333 = varied p from 2.7 to 3.2
dp2 92~ 0.3333333) o2 [*76™]

Special features: Hessian matrix is available. Quadratic objective function and
linear constraints. Parameter 2 is a right hand side perturbation.
A plot of the behavior of the optimum with -espect to pj is presented in
figure A.3. For p1 2 1.04889, constraint g2 enters the active set. We can
see a change in sign of dzf"‘/dp1 from a region of positive curvature to a

region of negative curvature. We can also s:€ the discontinuity of the slope
of 9x*/op and du*/dp when the active set changes.

A plot of the behavior of the optimum with respect to p2 is presented in
figure A.4. For p1 < 0.95, constraint g3 entars the active set.. Again we
can see the discontinuity in dx*/dpy and ou*/dpa.
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£(x*)

Design Variables

Figure A.3  Sensitivity with respect to p(1) for Problem 2
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Problem 3 (Common name Rosen and Suzuki Test Problem):
Minimize  f(xX) = X> + X5 + 25 + X, - 5x1 - 5x2 - 21x3 + 7xg + 100
. ) 2 2 2 .2
subject to:  g1(x) = (-x - X5 - X3~ Xy - X] +X2- <3 +X4 ¥8+p120
g2(x) = (-x% - 2x§ - x§ - 2xi +Xx1+x)/10+p220

gi(x) = (-2xf - xg - xg -2x1+ X2+ x1)/5+p320

- 20

1 20
Variable bounds ['18 <x< [20}
.10 20

Starting Point for Optimization x0 = (0.0,0.0,0.0,0.0) p%=(1,1,1)

Optimum Point: f(x*(p0)) = 56.0 x*(p9) = (.0, 1.0, 2.0, -1.0)

g1 and g3 active: u*(pY) = (£.0, 0.0, 10.0)
1200 0

Hessian of the Lagrangian H{ 8 g 10 0 % :I
0004

Sensitivity derivatives

A 50 - ['bl'é’134“7218908340 e T varied py from 0.86 to 1.12
ap; = 80 Fpr=| 02279022 -= 8610 1.

35403608 ] T' 1554605800

0.0 (e 700
df ox* |[0.0 u* : .

0.0 '

13057920 67142830
* * .-

4f _ 00 - 01-543015813 u* | 0.0 varied p; from 0.86 to 1.12
dpy 9p1 | 105413101 Gp1 | 554605800

Special features: Hessian matrix is available. Quadratic objective function and
quadratic constraints. Problem has been used in the other studies of optimal

design, the parameters that we are studying are right hand side
perturbations.
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Figure A.5 and A.6 present plots of the variatioa of the optimum with
respect to p1. The following changes in the act:ve set are introduced: when
p1 < .855, constraint g3 leaves the active set; v hen p1 2 1.057, constraint
g2 enters the active set; when p1 = 1.078, const raint g leaves the active set.
The plot shows that f*(py) is nonlinear. It is d: fficult to see the
discontinuity in dx*/dp} but we can clearly see the discontinuity in ou*/9pi.
Figure A.7 presents a close up view of the bek avior of x3 and x4. We can
see that x3 is a nonlinear and a piecewise cont:nuous function of p1. The
discontinuities take place when the active set changes. With the resolution
in figure A.5 this behavior was very difficult to see, however with the
enlarged view this becomes easy to see.

A plot of the behavior of the optimum with re spect to p2 is presented in
figure A.8. Whenp2 < 0.9, constraint g enters the active set. In figure
A.8 we can see a sharp discontinuity in ou/or and we also can see that large
errors would be introduced if the value of the objective function was
extrapolated from the base point to after the a stive set changed.
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Design Variables

Figure A.5 Sensitivity with respect to p(1) for Problem 3
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Constraints

Lagrange Mulupliers

Figure A.6 Sensitivity with respect to p(1) for Problem 3 (cont)
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Figure A.7 Plots of the Sensitivity of x(3) ani x(4) for problem 3 p(1)
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Design Variables

Figure A.8 Sensitivity with respect to p(2) for Problem 3
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Problem 4:
55 5

Minimize  f(x) = ze,x,+ > Zc.,x.x,+ Zdjx
J=1 i=1j=1

5
subjectto: gj(x) = 2ajixi-bj20 i=1,10
=l

Where the values of ajj, by, Cjj, dj, €; are constants that can be found in (Coville
1969, Himmelblau 1972, Eason and Fenton 1974, or Sandgren 1977)

0 20
0 20
Variable bounds| 0 | < x <[ 20
0 20
0 20

Starting Point for Optimization x0 = (0.,0.,0.,0.,1.) pO = (b3, bs, bg, bg)=(-.25,-4.,-1.,5.)
Optimum Point: f(x*(p9)) =-3.234866708
x*(po) = (0.3, 0.3334676, 0.,0.4283101,0.2239649)

23, g5, 86, and gg are active:
u*(p0) = (0.,0.,0.517404,0.,1.306111,1.183954594,0.,0.,0.010390,0.)

6.72 -40 -2.0 6.4 -2.0
-4.09.4006 -1.2 -6.2 6.4
Hessian of the Lagrangian HS -2.0 -1.2 44 -1.2 -2.0
6.4 -6.2 -129.3418 -4.0
-20 6.4 -2.0 -4.0 62688
Sensitivity derivatives
-0.4 ‘
0.40)7099
df — 517404 a" _| 05 a V036624 ried py from -0.39 1o -.019
-0.067740 0.019084
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0.0

A _ ape111 22|00 du* _| 0505155 | . edp, from -4.510 -3.5
dp2 2 ' Jpz | 061554 p2 ' '
-.049166 0.0024016
0.09817 -
0.2 .
' 34303
0.094082
df ox* Ju* |-0.061564 ;
a'a= 1.18395 55?= 0 -2%838517 E=[0.7206951 varied p3 from -1.2t0-0.8
0.228%17 0.159647
0.0
0.019085
df _ 10300 = % 791 dur 0002402} rieq by from 4.0 10 6.0
dps - 31 | 00761408 | P4 | 21506ET P S
15499104 0.083860

Special features: Hessian matrix is available. Cubic objective function and linear
constraints. Active set changes are introduced for changes in p4. The
parameters being studied are right hand side per! urbation. This problem has also
been studied by Fiacco et. al. (1974,1983).

A plot of the sensitivity of the optimum with respect to p1 is presented in figure
A.9. Plots of the optimum sensitivity with respect to p2 and p3 are similar to
those to py. For variation in the first three pararneters, the optimum objective
function behaves linearly and there are no changes in the active set for the range
of parameter perturbation that was studied.

A plot of the sensitivity of the optimum with respect to p4 is presented in figures
A.10and A.11. Constraint gg leaves the active set when p4 < 4.876. After
constraint gg has left the active set further variation of p4 has no effect on the
optimum. For increasing values of pa, errors v-ould be introduced if a linear

extrapolation was used.
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f(x*)

Design Variables

Lagrange Muluplicrs

Figure A.9 Sensitivity with respect t¢ p(1) for Problem 4
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H(x*)

Desion Variables

Figure A.10 Sensitivity with respect to P(4) for Problem 4
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Lagrange Multipliers
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Figure A.11 Sensitivity with respect to P(4) for Problem 4 (cont)
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Appendix 2

THE ROQCRE AND ROSEN SYSTEMS

This section will discuss the system that was created for studying parameter
sensitivities. The first subsection introduces the support program RQCRE that was written
to simplify the construction of test problems. The second section will discuss the RQSEN
system. The RQSEN system is a interactive program that acts as a post
processor/sensitivity analysis module for the RQOPT program.

RQCRE and RQSEN were set up to have some user friendly features. The
programs have some user-freindly features hcwever the programs will crash if, the user
enters numbers in response to a promt for an 1pha data type, and may crash if the user
enters letters when the system is requesting numbers.

A2.1 The RQCRE Support System

The RQCRE program was written to r:duce the time required to implement test
problems. The RQSEN program requires approximately 30 arrays and a complicated main
program to be written by the user. The RQCRE program automatically dimensions the
proper arrays and writes the required calling rograms. Using the RQCRE program
reduced the time required to implement test programs during our initial testing.

The RQCRE program is essentially a program that writes another program. The
main features of the RQCRE program are;

1. The program can be used in an inte ractive mode.

2. The program writes the main callir g program.

3. The program can write an outline of the function subprogram.
4. The program can be used to update the problem formulation.

A structure chart of the RQCRE progiam (in CMS) is presented in Figure A2.1.
The basic functions of the program modules &re;

RQCRE.EXEC - this module connect; the proper output files to the proper unit
numbers.

RQCRE - is a FORTRAN program thit can be used interactively to create a problem
for submission to the RQSEN system. The input to RQCRE can either
come from a data file or from :he user. The output from RQCRE is a data
file "data" that can be used as an input file for RQSEN, a MAIN FORTRAN
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program ready for compilation, ind a shell for the function subprogram.

1.0



oM

pE R RONUE

-10.
-10.
-10.
20.0
20.0
20.0

1.0

3.0

RQCRE.EXEC

S

MAIN FSUBD

Figure A2.

=N
=LFSW
=NEQ
=LEQ
=NINEQ
=LINEQ
=NPARM
=MAXIT
=ISTART
=IFIN
=LPP
=NOUTFL
=ITR
=PMIN
=CAPFMN
=DELTA
=R
=GAMMA
=EPSQP
=EPSGRD
=IDIF
=NSCALE
=ZEROM
=X (1)
=X (2)
=X (3)
=XMIN(1)
=XMIN (2)
=XMIN (3)
=XMAX (1)
=XMAX (2)
=XMAX (3)
=PARM (1)
=PARM(2)

1 A Structure Chart for the RQCRE Program.

Figure A2.2 A Sample of a Data file (Test Problem 2) for the RQSEN Program.
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data - the input/output data file that co:tains the algorithm parameters, starting point
and initial values of the parameters for RQSEN.

MAIN - FORTRAN program used as :he main calling program when running
RQSEN.

FSUBI - a FORTRAN function that th: user is required to modify by adding the

definitions of the constraints ard objective function.

A sample of the data file for test problem 2 is presented in Figure A2.2. This file
was written by the RQCRE program. This da:a file is used as an input to the RQSEN
system to provide the programs with the values of the algorithm parameters, design
variables, and initial values of the parameters.

A sample of the a program written by the RQCRE program is provided in Figure
A2.3. The program represents an implementa'ion for test problem 2 (described in appendix
1). The only modifications that were made to the program are, the objective function and
the constraint definitions that were added to thz code generated by RQCRE.

A2.2 The RQSEN program

This section describes the implementaiion of the RQSEN system. The first topic to
be discussed is the capabilities of the RQSEN system. Next a description of the
implementation is provided. The final topic presented in this section is a sample session
from the RQSEN system.

The basic capabilities of the RQSEN svstem are;

1. The program can be used to solve optimal design problems.

2. The program can be used to conduc:t convergence studies for various versions of
RQOPT.

3. The program can be used to calculzte parameter sensitivity derivatives.

4. The program can be used to conduct studies of large variations in the
parameters.

5. The program can be used to create jarameter sensitivity plots that can be used.
for trade off studies.

The RQSEN system is currently implk mented on the following systems, an [BM
4341 under the CMS operating system and a rnicroVAX under the VMS operating system.
The programs are written in FORTRAN 77 ard implemented in double precision.

Figure A2.4 presents a structure char for the RQSEN program (CMS
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C

PROGRAM RTS02

C TEST PROBLEM 2 PH. D., CREATED BY TOID J. BELTRACCHI TO EXAMINE
C CONVERGENCE OF THE HESSIAN APPROX AN} CHANGES IN THE ACTIVE SET
C THIS HAS A QUADRATIC OBJECTIVE FUNCT.ON AND LINEAR CONSTRAINTS

C

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION X (3),XMIN(3),XMAX(3),SCALE (3),H(3,3),DELFHG(3, 3),

1 FUNCT(3),P(3),U(8),V(1),XS(3),DI'HGS (3, 3),FUNCTS (3) ,PS(3),US(8),
2 VS(1),DFDP(2),FUNCTP (3, 2),DXDP (},2) ,DUDP (8, 2),DVDP (1, 2),DFDPE (2),
3 DGDP (2,2)

LOGICAL YESNO,ACTPT (8),ACTPTS (8)

CHARACTER*3 YSN

CHARACTER*7 FILENM

COMMON /OPTDAT/ D (400)

COMMON /BFSWK/ DD (20)

COMMON /PMINI/ PMINI (3)

COMMON /PMAXI/ PMAXI (3)

COMMON /PARMS/ PARM(2)

INCLUDE (RQS)

END

C *rr Ak kA A A AR AR R AR AR A AR AR A RAKRAKRr Ak hhk kA kA Ak Ak Rk r A A AT AA KA Ah Ak x

1

FUNCTION FSUBT (X, IEVAL)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X (3)

COMMON /NFEVAL/ NCE, NFE

COMMON /PARMS/ P (2)

IF (IEVAL .GT. 1) GOTO 2
NFE=NFE+1

C PLACE OBJECTIVE FUNCTION DEFINITION HERE

2

FSUBI=2.5% (X (1) **2+X (2) **2+X (3) ** 2) +X (1) *X (2) +X (1) *X (3) +X (2) *X (3)
1 5. (X(L)+P (L) *X (2)+X(3))

RETURN

NCE=NCE+1

C PLACE LINEAR EQUALITY CONSTRAINTS HEFE

10

20

GOTO (10, 20, ) IEVAL
FSUBI=P (1) *X(1)+X(2)+X(3)-P(2)
RETURN
FSUBI=X(1)+2.*X(2)+3.*X(3)~4.7-F (1)
RETURN
END

Figure A2.3 A Sample Program (Test Prcblem 2) for RQSEN.
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MAIN
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data ‘

WRTPT

RQOPT ROQSEN
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w RQDR ;” PRVRDR
RQOPT's | w RQOPT's
Routines i Routines

Figure

( FSUBI )
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A2.4 A Structure Chatt for the RQSEN System.




implementation). A brief explanation of eact of the program modules is provided

RQSEN.EXEC - this module connects the proper files to the proper unit numbers
and prompts the user for the rame of the program to be run.

MAIN - the main calling program. This module calls RQOPT and RQSEN, this
module also reads in the starting point and algorithm parameters for RQOPT
and allows the user to save solution point to a data file for later use, i.e. a
sensitivity study at a later tim¢ .

FSUBI - the function subprogram tha: defines the objective function and
constraints.

data - the data file that contains the al;;orithm parameters and values of the design
variables.

RQOPT - implementation of the RQP method described in Beltracchi and Gabriele
(1987 b).

RQSEN - the main driving routine fo- a sensitivity analysis.
WRTPT - A utility program for writing the design point, Lagrange multipliers and
values of the objective functicn and constraints to a summary file. The

summary file is in a form which can be read by a plotting program to
graphically display the sensitivity information.

solf - a data file used to communicate optimum design points to a plotting program.

PARTP - a subroutine that uses either forward, central or user supplied routines to
calculate the partials with respect to the design parameters of the objective
function and constraints.

PARSEN - a subroutine that calculat:s ax*/dp, du/dp, df/dp and dg/dp by either
forward or central differencing. The user can specify the perturbation size
and the number of iterations that RQOPT uses to solve the perturbed
problem.

PARSEN? - a subroutine similar to PARSEN but this imnplements modified central
differencing.

RQDR - is the routine that controls the execution of RQOPT for reoptimization.

PARVAR - the subroutine used to coaduct studies of large variations in problem
parameters, if parameter sensitivity derivatives are available then the location
of the starting point for the renptimization is approximated by.

ox
Xinitial = X(p) + ) Ap

PRVRDR - is the routine that control; the execution of RQOPT for reoptimization.
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The rest of this section describes the steps involved in using the RQSEN system.

The first step is for the user to create the necessary FORTRAN code to define the
main calling program and the function subprogram (similar to the one in Figure A2.3). The
second step isto setup a data file (similar to the one presented in Figure A2.2) with the
values of the design variables and algorithm parame €fs. These first two steps can be
performed with the aid of the RQCRE preprocessot

Once the calling program, function subprogram, and the data file are defined, the
user can run the RQSEN system to conduct a study of the sensitivity of the optimum of the
problem or t0 study the convergence of the problerm..

A sample of some convergence plots are presented in Figure A2.5 & 6. These plots
can be used to assess the convergence criteria of various algorithms, for example Figure
A2.5 shows that the BFS version was able to solve the test problem faster than the version
that used the SR1 update. However the SR1 updae found a more accurate estimate of the
optimum, and once the region of the minimum was. located the convergence for the SR1
update was better than the BFS update.

The best way to explain how the program can be used to conduct parameter
sensitivity studies is t0 provide a sample session (see Figure A2.7) that was run under the
IBM version of RQSEN. The next several paragraphs describe the output in Figure A2,
all user responses are shown in italics.

The sample problem 2, described in appendix 1,18 solved. The modified SR1
update is used to approximate the Hessian of the l.agrangian, and modified central
differencing is used to calculate the sensitivity de rivatives. The first step for running
RQSEN to invoke the exec file to start the progrém, this is done by entering rgsrl 4. The
first prompt asks the user for a name of a data file to store the results in the user responds
with rts02. This data file can be used to maintzin a summary of all optimum points. The
next prompt is for the name of the program to be run, in our example program rs02, an
implementation of test problem 2 (see appendix 1) was run. The program and data file
were presented in Figure A2.3 and A22.

When the program begins the first prompt is for the name of the file with the input
data. A response of rts02 is entered, the program then reads in the data from file rt s02.

The next prompt asks if there is an approximation to several arrays available. These arrays
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Figure A2.6 A Sample Plot Showing the Convergence of the Design Variables.
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are saved if the optimum has already been found, a response of "'n " for no is enteredl.
Now the program invokes the RQOPT program to ‘ocate the optimum of the problem. A
summary of the output from RQOPT (during the 0} ttimization) is presented in Figure
A2.7(a-c). After the problem has been solved some final statistics from RQOPT are
presented along with an approximation to the Hess an of the Lagrangian, in both the LDLT
format and the unfactored form. These are shown in Figure A2.7(b & ¢).

After the problem has been solved by RQCPT control is returned to the
preprocessor (see Figure A2.7(c)). The preprocessor provides the user with a choice of
being able to save the optimal point. In the example the response was "y " for yes was
entered, next the user is asked if he wants to save | he final point in the same file as the
initial point, a response of "n" for no was enterec2. Next the user is asked to supply a
new name of the data file to store the point in, a response of rts02s was entered. The
data file was then written and the user asked if they wanted the gradients and Hessian
approximation to be written to the file, a response of "y " was entered3. The preprocessor
next asks if the user wants to perform a sensitivity analysis, a response of "y " for yes is
entered.

Now control is passed the the RQSEN program (see Figure A2.7(c-¢)). The first
question asked by RQSEN is if the user wants th: solution points written to a solution file a
response of "n" is entered. The next question asked is for a value of epsilon to calculate
the partial derivatives of the problem functions. RQSEN then calculates the partials of the
objective function and constraints, the derivative of the objective function is then calculated
by equation 1.20.

The next step in the sample output is the calculation of the partials of the optimum
design variables and Lagrange multipliers with respect to the first parameter for the
problem. Again the user can specify the size of the perturbation of the parameter and the
number of iteration that RQOPT is allowed to use for solving the perturbed problem. In
this example central differencing is used, and Hessian updating is allowed, notice that in
Figure A2.7(d) the Hessian approximation has onverged.

Figure A2.7(¢) shows the values of the parameter sensitivity derivatives that were
calculated by RQSEN. The gradient of the objective function df*/dp was calculated by 3

1RQCRE or RQSEN will accept either "YES", "YE","Y", "yes", "ye", or "y" for a yes responce and
"NO", "N", "no", "n", null for a no responce.

21f the user responded yes then the final point would overwrite the initial point in the data file.

3 The Data file can now be used as an input to RQSEN for a sensitivity analysis performed using the
gradients and Hessian approximation that were found when solving the problem.
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different approximtions, all values are reported for -omparison. The next option of the
program is to study finite perturbations in the parameter. This option can be used to
calculate optimal designs for different values of the parameters and then to write the optimal
design points to a data file (see Figure A2.7 (e&f)). Therest of the sample output involves
terminating the program.

When the user saves the optimal points plots of the optimum sensitivity can be

made. An example of the sensitivity for problem 2 when py is varied is presented in Figure
A2.8.
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Figure 3.8 A Plot of the Sensitivity of the Opt:mum Objective Function and Optimum value
of the Design Variables for P1 oblem 2 when pj is perturbed
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rgsrl4
INPUT NAME OF THE FILE TO HOLD THE SENSITIVITY DATA
rts02
FILEDEF 9 DISK RTS02 DATA Al ( LRECL £00
INPUT NAME OF THE PROGRAM TO BE RUM BY RQSEN
rts02
LOAD RTS02 SR14 RQOPT OPTQP RQSEN PAR¢ENZ2 PARVAR WRTPT ( CLEAR START
Execution begins...
************************************1**********

* ENTERING RQOPT/RQSEN PREPROCES!.OR *

************************************#**********

INPUT NAME OF THE FILE WITH INPUT DAT (XXXXXXX)

rts02

OPENING FILE, RTS02 ON UNIT= 3 FOR INPUT OF PROBLEM DATA
ARE FUNCT, H,U,V,ACTPT,DELFHG IN FILE RTS02 (YES/NO)

n

ROOPT VERSION 2.12 - EXPERMENTAL 2/9/38

STARTING INFORMATION

INPUT PARAMETERS:

NUMBER OF VARAIBLZS = 3
OPTIMIZATION TO BE PERFORMED ON A NCN-LINEAR OBJECTIVE FUNCTION
NUMBER OF EQUALITY CONSTRAINTS = 0
NUMBER OF LINEAR EQ CONSTRAINTIS = 0
NUMBER OF INEQUALITY CONSTRAINTS = 2
NUMBER OF LINEAR INEQ CONSTRAINTS = 2
MAXIMUM NUMBER OF ITERATICNS = 100
LINES PER PEGE = 50
ITR = 1
NUMBER OF OUTPUT FILE = 6
DEL.TA 0.500000E+00
R 0.100000E+02
GAMMA 0.100000E-04
EPSILON FOR THE QP 0.100000E-09
EPSILON FOR THE GHAD 0.100000E-03
DIFFERNCING T'PE 2

INITIAL VAULE OF CAPF
MINIMUM VALUE OF CAPF
MINIMUM NORM OF P VECTOR

0.000000E+00
0.100000E-06
0.100000E-03

SCALING PARAMETER NSCALE 0
NUMBER OF PARAMETERS NPARM 2
INDEX PARAMETER VALUE
1 1.00000000000000000
2 3.00000000000000000
I XMIN XMAX SCALE

1 0.000000E+0Q0 0.100000E+0Q3 0.100000E+01
2 0.000000E+00 0.100000E+C3 0.100000E+01
3 0.000000E+00 0.100000E+C3 0.100000E+01

Figure A2.7(a) A Sample of RQSEN for Test Problem 2.



THE HESSIAN APPROXIMATION IN 1DL(T) FORM
RCW 1 0.100000E+01

ROW 2 0.000000E+00 0.100000E+01

ROW 3 0.000000E+00 0.000000E+00 0.100CJ0E+01

ENTERING DRIVER ROUTINE

————- ITERATION  0: O--—===—— ——————-
PAGE 1  OBJECTIVE FUNCTION = 0.331600(0E+02 FUNCTION EVALUATIONS= 1
CONSTRAINT EVALUATIONS= 14

INDEX X(I) H(I) = ?0 V(3) G(I) >= 20 U(I)
1 0.1100000E+01 0.600000E+00 0.000000E+00
2 0.1200000E+01 0.170000E+01 0.000000E+00

3 0.1300000E+01
CHECKING CONVERGENCE THE NORM OF P= 1 96446237582566496
———————————————————————————— ITERATION 1: 0= —————- ———=
PAGE 1 OBJECTIVE FUNCTION = 0.25535356E+02 FUNCTION EVALUATIONS= 8
CONSTRAINT EVALUATIONS= 19

INDEX X (1) H(I) = 20 V(L) G(I) >= 70 U(I)
1 0.9059701E+00 A-.288658E-14 0.000000E+00
2 0.1000000E+01 A0.488060E+00 0.000000E+00

3 0.1094030E+01
CHECKING CONVERGENCE THE NORM COF P= 0.345110459418981358
———————————————————————————— ITERATION D
PAGE 1 OBJECTIVE FUNCTION = 0.25503133E+02 FUNCTION EVALUATIONS= 16
CONSTRAINT EVALUATIONS= 23

INDEX X(I) H(I) = 20 V:I) G(I) >= 20 U(I)
1 0.1027985E+01 A0.577316E-14 0.586085E+01
2 0.1000000E+01 A0.244030E+00 0.659360E-01

3 0.9720149E+00
CHECKING CONVERGENCE THE NORM OF P= 0 395769395140752175E-01
———————————————————————————— ITERATION 31 2mmm—mm————m——m oo T
PAGE 1 OBJECTIVE FUNCTION = 0.25500)00E+02 FUNCTION EVALUATIONS= 23
CONSTRAINT EVALUATIONS= 25

INDEX X (1) H(I) = 2?0 V(1) G(I) >= 20 U(I)
1 0.1000000E+01 AO.288658E-14 0.120000E+02
2 0.1000000E+01 AO.300000E+00 -.288658E-14

3 0.1000000E+01
CHECKING CONVERGENCE THE NORM CF P= 0.395476598531791093E—08
CONVERGENCE ACHIEVED

FINAL STATISTICS
CONVERGENCE ACHEIVED
IN 29 FUNCTION EVALUATIOMS
4 FUNCTION GRADIENTS
25 CONSTRAINT EVALUAT:ONS
2 CONSTRAINT GRADIENT'S
3 ITTERATIONS
WITH 0.00000000E+00 BEING THE MAXIMM CONSTRAINT VIOLATION

Figure A2.7(b) A sample of RQSEN for test problem 2.
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THE HESSIAN APPROXIMATION IN LDL(T) ]'ORM
ROW 1 0.450000E+01

ROW 2 0.444444E+00 0.211111E+01

ROW 3 0.111111E+00 0.842105E+00 0. '94737E+01
THE HESSIAN APPROXIMATION UPPER TRIANGLE

ROW 1 0.450000E+01 0.200000E+01 0.509000E+00
ROW 2 0.300000E+01 0.200000E+01

ROW 3 0.450000E+01

PAGE 1 OBJECTIVE FUNCTION = 0.2550:)000E+02 FUNCTION EVALUATIONS= 29
CONSTRAINT EVALUATIONS= 25

INDEX X (1) H(I) = 20 V(I) G(I) >= 20 U(I)
1 0.1000000E+01 A0.288658E-14 0.120000E+02
2 0.1000000E+01 AQ.300000E+00 0.000000E+00

3 0.1000000E+01

DO YOU WISH TO SAVE THE FINAL DATA (Y :S/NO)?
y

DO YOU WISH TO USE THE SAME FILE RTS)2 (YES/NO) ?

n

INPUT NAME OF THE FILE FOR STORAGE OF DATA (XXXXXXX)

rts02s
OPENING FILE,RTS02S ON UNIT= 4 TO 3TORE PROBLEM DATA

DO YOU WANT FUNCT, H, U,V,DELFHG, ACTPT WRITTEN TO RTS02S (YES/NO) ?
Y
DO YOU WANT TO PERFORM A SENSITIVITY ANALYSIS (YES/NO)?
Yy
WELCOME TO RQSEN1.0

A SENSITIVITY ANALYSIS PROGRAM FOR QOPT

LAST MODIFIED APRIL 28 1988

DO YOU WANT TO WRITE THE SOLUTION POINTS TO FILE= 9 (YES/NO) ?
n

THE DERIVATIVE OF THE OBJECTIVE FUNITION WITH
RESPECT TO ALL PARAMETERS WILL BE CALCULATED

INPUT EPSP FOR THE CALCULATION OF DF/DP

THE DERIVATIVE OF OBJECTIVE FUNCTION W.R.T. P
-0.6999999989E+01 0.1200000000E+02

DO YOU WANT TO STUDY FINITE PERTURBATIONS

ENTER PARAMETER NUMBER OR (-1 OR CTRL Z) TO CALCULATE GRADS?
-

-1

DO YOU WISH TO FIND PARTIALS OF THE JESIGN VARIABLES AND
LAGRANGE MULTIPLIERS W.R.T. PARAMETER (NUMBER OR -1 TO END)?
?

1

Figure A2.7(c) A Sample of RQSENM for Test Problem 2.



ENTER EPSP FOR THE GRADIENT CALCULATION?
?

.0001

PERFORMING A SENSITIVITY ANALYSIS FOR PARM( 1)
ASSUMING BASE POINT IS STABLE

BASE POINT VALUE PARM( 1)=0.1000000000000000E+01
PERTURBED VALUE OF PARM( 1)=0.1000: 00000000000E+01

ENTER THE NUMBER OF ITERATICNS FOR 1I'QOPT?
?

2

dkhkhkhkhkkkhkdkhkhkhkhkkhkkhkhkkkixkkk ENTERING RQOPT khkhkhkkhkkhkhkkkhkkkkhkkkkkhkx

ENTERING DRIVER ROUTINE

————————————— ITERATION 0O: O PARAMEER( 1)= 0.10001000E+0l---——=—-—-

PAGE 1 OBJECTIVE FUNCTION = 0.255)0500E+02 FUNCTION EVALUATIONS= 7
CONSTRAINT EVALUATIONS= 26

INDEX X(I) H(I) = 20 V(I) G(I) >= 20 U@
1 0.1000000E+01 A0.100000E-03 0.120000E+02
2 0.1000000E+01 A0.299900E+00 0.000000E+00

3 (0.1000000E+01
CHECKING CONVERGENCE THE NORM OF P= 0.924648797898831832E-03
————————————— ITERATION 1: O PARAMETER( 1)= 0.10001000E+0l-—=———-———
PAGE 1 OBJECTIVE FUNCTION = 0.25439301E+02 FUNCTION EVALUATIONS= 14
CONSTRAINT EVALUATIONS= 28

INDEX X(I) H(I) = 20 V(I) G(I) >= 20 U (I)
1 0.1000483E+01 A-.133227E-14 0.119995E+02
2 0.9992333E+00 AQ.299400E+00 0.000000E+00

3 0.1000183E+01
CHECKING CONVERGENCE THE NORM OF P= 0.673599522571675425E-03
————————————— ITERATION 2: O PARAMETER( 1)= 0.10001000E+01-——==—=-—=
PAGE 1 OBJECTIVE FUNCTION = 0.25439300E+02 FUNCTION EVALUATIONS= 21
CONSTRAINT EVALUATIONS= 30

INDEX X (1) H(I) = 20 V(I) G(I) >= 20 U(I)
1 0.1000208E+01 A-.222045E-14 0.119995E+02
2 0.9997833E+00 A0.299400E+00 0.000000E+00

3 0.9999083E+00

khkkkkkhkhkkkkhkkhkhkkkkkkkkxkkxkx TEAVING RQOPT khkkhkkhkhkkdhkkhkkkkhkhkkkkkxxkx

THE HESSIAN APPROXIMATION UPPER TRIANGLE
ROW 1 0.500000E+01 0.100000E+01 0.1C0000E+01
ROW 2 0.500000E+01 0.100000E+01

ROW 3 0.500000E+01
PERTURBED VALUE OF PARM( 1 )= 0.999899999999999997
ENTER THE NUMBER OF ITERATIONS FOR RQOPT?

?
1

Figure A2.7(d) A Sample of RQSEN for Test Problem 2.
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************************** ENTERING RQOPT ********'k***********‘k*

ENTERING DRIVER ROUTINE

——————————— ITERATION 0: O PARAMETER( 1)= 0.99990000E+00———————————

PAGE 1 OBJECTIVE FUNCTION = 0.2550070(E+02 FUNCTION EVALUATIONS= 22
CONSTRAINT EVALUATIONS= 44

INDEX X{(I) (1) = 20 V(I G(I) >= 20 U(I)
1 0.9997917E+00 AQ.416638E-07 0.120005E+02
2 0.1000217E+01 A0.300600E+00 0.000000E+00

3 0.1000092E+01
CHECKING CONVERGENCE THE NORM OF P= 0.0)0000000000000000E+00

CONVERGENCE ACHIEVED
*************************** LEAVING RQOCPT PRI 34 3 Seladalolahole

CENTRAL DIFFERENCE APPROXIAMATIONS TO

DF/DP (PART F + U PART G) -6.999999?8889772823
DF/DP (PART F + DF/DX*DX/DP) —7.002499?3049339675
DF/DP (CENTRAL DIFERENCE) —7.002499&3051293134

oo

DX/DP (CENTRAL FINITE DIFFERNECE)
0.20831917E+01 -0.21667085E+01 —0.9166)155E+00

pV/DP (FINITE DIFFERNECE)

pu( 1)/DP( 1) (CENT DIFF) = -0.466697 46E+01
pu( 2)/pP( 1) (CENT DIFF) = 0.00000( 00E+0Q0
ACTIVE CONSTRAINT pG( 2) /DP( 1) = -.0.60002999E+01
PGPP+PXPP*PGPP = pGg( 2) /DP( 1) = ..0.60002999%E+01

LINEAR ESTIMATE OF WHEN ACTIVE SET WILL CHANGE FOR INCREASE P
G( 2) ENTERS THE ACTIVE SET FOR DELTA P = 0.49998E-01
I.E. WHEN P( 1) = 0.10499975E+01

LINEAR ESTIMATE OF WHEN ACTIVE SET WILL CHANGE FOR DECREASED P
«MIN( 2) ENTERS THE ACTIVE SET FOR DELTA P =-0.46153E+00
I.E. WHEN P( 1)= 0.53847045E+00
DO YOU WISH TO CALCULATE THE NEW OPTIMUM FOR A NEW VALUE OF PARM( 1)7?

Y

PERFORMING A PARAMETER STUDY FOR PARI( 1)
ASSUMING BASE POINT IS STABLE

BASE POINT VALUE PARM( l)=.1000000300000000E+01

DF/DP = -0.70000000E+01

DX/DP( 1)= 0.20831917E+01 —O.216(7085E+01 —0.91669155E+OO
ENTER THE PERTURBATION FOR THE PARAMETER OR

ENTER 0.0 OR NULL TO EXIT FORM THIS ¢, UBROUTINE?

?

.1
Figure A2.7(¢) A Sample of RQSEN for Test Problem 2.



THE NEW VALUE OF P( 1l)= 0.1100000(E+01
Kk kkk Kk kHkkkkkkk*kk*kkk*k**% ENTERING PQOPT ***rkkkkkdkkhkhkhh sk kk

ENTERING DRIVER ROUTINE

———————————— ITERATION 0: O PARAME'ER( 1)= 0.11000000E+01--———==---

PAGE 1  OBJECTIVE FUNCTION = 0.24893909E+02 FUNCTION EVALUATIONS= 30
CONSTRAINT EVALUATIONS= 60

INDEX X(I) H(I) = 20 V(I) G(I) >= 20 U(I)
1 0.1208319E+01 AQ0.208111E-01 0.115333E+02
2 0.7833292E+00 A-.300030E+00 0.000000E+00

3 0.9083308E+00
CHECKING CONVERGENCE THE NORM OF P= 0.219176271755135058
———————————— ITERATION 1: O PARAMETER( 1)= 0.11000000E+01--———---—-
PAGE 1 OBJECTIVE FUNCTION = 0.247.12404E+02 FUNCTION EVALUATIONS= 37
CONSTRAINT EVALUATIONS= 62

INDEX X(I) H(I) = 20 V(I) G(I) >= 20 U(I)
1 0.1045910E+01 A0.415223E-13 0.104876E+02
2 0.7944067E+00 A0.235367E-13 0.542741E+00

3 0.1055092E+01
CHECKING CONVERGENCE THE NORM OF P= (0.000000000000000000E+00
CONVERGENCE ACHIEVED
% % % % Je & K de & Fo d F k& ok k ke ke kok ok ok ke ok ok LEAVING _{QOPT % % % % F %k gk gk ok v v Ik e Kk gk ko ok
ENTER THE PERTURBATION FOR THE PARAMITER OR
ENTER 0.0 OR NULL TO EXIT FORM THIS ;UBROUTINE?
?
0.0
DO YOU WANT TO STUDY FINITE PERTURBA'’IONS
ENTER PARAMETER NUMBER OR (-1 OR CTR. 2z) TO CALCULATE GRADS?
?
-1
DO YOU WISH TO FIND PARTIALS OF THE )JESIGN VARIABLES AND
LAGRANGE MULTIPLIERS W.R.T. PARAMETER (NUMBER OR -1 TO END)?
?
-1
Ready; T=2.81/4.12 11:23:12 $2.46

Figure A2.7(f) A Sample of RQSEN for Test Problem 2.
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